Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;33(10):893-910.
doi: 10.1071/FP06139.

Structure-function relationships of the plant cuticle and cuticular waxes - a smart material?

Affiliations

Structure-function relationships of the plant cuticle and cuticular waxes - a smart material?

Hendrik Bargel et al. Funct Plant Biol. 2006 Oct.

Abstract

The cuticle is the main interface between plants and their environment. It covers the epidermis of all aerial primary parts of plant organs as a continuous extracellular matrix. This hydrophobic natural composite consists mainly of the biopolymer, cutin, and cuticular lipids collectively called waxes, with a high degree of variability in composition and structure. The cuticle and cuticular waxes exhibit a multitude of functions that enable plant life in many different terrestrial habitats and play important roles in interfacial interactions. This review highlights structure-function relationships that are the subjects of current research activities. The surface waxes often form complex crystalline microstructures that originate from self-assembly processes. The concepts and results of the analysis of model structures and the influence of template effects are critically discussed. Recent investigations of surface waxes by electron and X-ray diffraction revealed that these could be assigned to three crystal symmetry classes, while the background layer is not amorphous, but has an orthorhombic order. In addition, advantages of the characterisation of formation of model wax types on a molecular scale are presented. Epicuticular wax crystals may cause extreme water repellency and, in addition, a striking self-cleaning property. The principles of wetting and up-to-date concepts of the transfer of plant surface properties to biomimetic technical applications are reviewed. Finally, biomechanical studies have demonstrated that the cuticle is a mechanically important structure, whose properties are dynamically modified by the plant in response to internal and external stimuli. Thus, the cuticle combines many aspects attributed to smart materials.

PubMed Disclaimer