Glycosylase base editors enable C-to-A and C-to-G base changes
- PMID: 32690970
- DOI: 10.1038/s41587-020-0592-2
Glycosylase base editors enable C-to-A and C-to-G base changes
Erratum in
-
Publisher Correction: Glycosylase base editors enable C-to-A and C-to-G base changes.Nat Biotechnol. 2021 Jan;39(1):115. doi: 10.1038/s41587-020-0648-3. Nat Biotechnol. 2021. PMID: 32728159 No abstract available.
Abstract
Current base editors (BEs) catalyze only base transitions (C to T and A to G) and cannot produce base transversions. Here we present BEs that cause C-to-A transversions in Escherichia coli and C-to-G transversions in mammalian cells. These glycosylase base editors (GBEs) consist of a Cas9 nickase, a cytidine deaminase and a uracil-DNA glycosylase (Ung). Ung excises the U base created by the deaminase, forming an apurinic/apyrimidinic (AP) site that initiates the DNA repair process. In E. coli, we used activation-induced cytidine deaminase (AID) to construct AID-nCas9-Ung and found that it converts C to A with an average editing specificity of 93.8% ± 4.8% and editing efficiency of 87.2% ± 6.9%. For use in mammalian cells, we replaced AID with rat APOBEC1 (APOBEC-nCas9-Ung). We tested APOBEC-nCas9-Ung at 30 endogenous sites, and we observed C-to-G conversions with a high editing specificity at the sixth position of the protospacer between 29.7% and 92.2% and an editing efficiency between 5.3% and 53.0%. APOBEC-nCas9-Ung supplements the current adenine and cytidine BEs (ABE and CBE, respectively) and could be used to target G/C disease-causing mutations.
Comment in
-
Base Editing Landscape Extends to Perform Transversion Mutation.Trends Genet. 2020 Dec;36(12):899-901. doi: 10.1016/j.tig.2020.09.001. Epub 2020 Sep 18. Trends Genet. 2020. PMID: 32951947
References
-
- Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). - DOI
-
- Fujii, W., Kawasaki, K., Sugiura, K. & Naito, K. Efficient generation of large-scale genome-modified mice using gRNA and Cas9 endonuclease. Nucleic Acids Res. 41, e187 (2013). - DOI
-
- Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas9 system. Nat. Biotechnol. 31, 227–229 (2013). - DOI
-
- Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014). - DOI
-
- Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015). - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
