Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 22;20(1):533.
doi: 10.1186/s12879-020-05266-2.

Characterization of putative drug resistant biomarkers in Plasmodium falciparum isolated from Ghanaian blood donors

Affiliations

Characterization of putative drug resistant biomarkers in Plasmodium falciparum isolated from Ghanaian blood donors

Enoch Aninagyei et al. BMC Infect Dis. .

Abstract

Background: Plasmodium falciparum parasites, which could harbour anti-malaria drug resistance genes, are commonly detected in blood donors in malaria-endemic areas. Notwithstanding, anti-malaria drug resistant biomarkers have not been characterized in blood donors with asymptomatic P. falciparum infection.

Methods: A total of 771 blood donors were selected from five districts in the Greater Accra Region, Ghana. Each donor sample was screened with malaria rapid diagnostic test (RDT) kit and parasitaemia quantified microscopically. Dried blood spots from malaria positive samples were genotyped for P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum multi-drug resistance (Pfmdr1), P. falciparum dihydropteroate-synthetase (Pfdhps), P. falciparum dihydrofolate-reductase (Pfdhfr) and Kelch 13 propeller domain on chromosome 13 (Kelch 13) genes.

Results: Of the 771 blood donors, 91 (11.8%) were positive by RDT. Analysis of sequence reads indicated successful genotyping of Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Kelch 13 genes in 84.6, 81.3, 86.8, 86.9 and 92.3% of the isolates respectively. Overall, 21 different mutant haplotypes were identified in 69 isolates (75.8%). In Pfcrt, CVIET haplotype was observed in 11.6% samples while in Pfmdr1, triple mutation (resulting in YFN haplotype) was detected in 8.1% of isolates. In Pfdhfr gene, triple mutation resulting in IRNI haplotype and in Pfdhps gene, quintuple mutation resulting in AGESS haplotype was identified in 17.7% parasite isolates. Finally, five non-synonymous Kelch 13 alleles were detected; C580Y (3.6%), P615L (4.8%), A578S (4.8%), I543V (2.4%) and A676S (1.2%) were detected.

Conclusion: Results obtained in this study indicated various frequencies of mutant alleles in Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Kelch 13 genes from P. falciparum infected blood donors. These alleles could reduce the efficacy of standard malaria treatment in transfusion-transmitted malaria cases. Incorporating malaria screening into donor screening protocol to defer infected donors is therefore recommended.

Keywords: Blood donors; Ghana; Mutant haplotypes; Plasmodium falciparum; Putative drug resistant biomarkers.

PubMed Disclaimer

Conflict of interest statement

None to declare

Figures

Fig. 1
Fig. 1
Map of Greater Accra region, Ghana showing study and other districts (map drawn by authors). The pie charts represent frequency of distribution of mutant alleles in each study site. The study districts were Accra Metropolis (5° 33′ 0″ N, 0° 12′ 0″ W), Ga West Municipal (5° 42′ 9″ N, 0° 18′ 0″ W), Ga South Municipal (5° 34′ 0″ N, 0° 20′ 0″ W), Ashaiman Municipal (5° 42′ 0″ N, 0° 2′ 0″ W) and Ada East District (5° 47′ 0″ N, 0° 38′ 0″ E)
Fig. 2
Fig. 2
Flow chart for blood donor selection, P. falciparum screening and gene sequencing success rate. RDT-SD Bioline rapid diagnostic test kit, Pfmdr1- P. falciparum multidrug resistance, Pfcrt- P. falciparum chloroquine resistance transporter, Pfdhfr- P. falciparum dihydrofolate reductase, Pfdhps- P. falciparum dihydropteroate synthase, Kelch 13- P. falciparum Kelch 13 propeller gene, n-number of donors or samples in each category

References

    1. Bruce-Chwatt LJ. Transfusion malaria revisited. Trop Dis Bull. 1982;79:827–840. - PubMed
    1. Owusu-Ofori AK, Betson M, Parry CM, Stothard R, Bates I. Transfusion-transmitted malaria in Ghana. Clin Infect Dis. 2013;56(12):1735–1741. doi: 10.1093/cid/cit130. - DOI - PubMed
    1. Owusu-Ofori A, Gadzo D, Bates I. Transfusion-transmitted malaria: donor prevalence of parasitaemia and a survey of healthcare workers knowledge and practices in a district hospital in Ghana. Malar J. 2016;15(1):234. doi: 10.1186/s12936-016-1289-3. - DOI - PMC - PubMed
    1. Adusei KA, Owusu-Ofori A. Prevalence of Plasmodium parasitaemia in blood donors and a survey of the knowledge, attitude and practices of transfusion malaria among health workers in a hospital in Kumasi, Ghana. PLoS One. 2018;13(11):e0206303. doi: 10.1371/journal.pone.0206303. - DOI - PMC - PubMed
    1. Mardani A, Keshavarz H, Pourfathollah AA, Maghsudlu M. Transfusion transmitted malaria in Iran: a narrative review article. Iran J Parasitol. 2016;11(2):136–143. - PMC - PubMed

MeSH terms