Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;8(8):672-682.
doi: 10.1016/S2213-8587(20)30159-5.

Treatment-related changes in bone mineral density as a surrogate biomarker for fracture risk reduction: meta-regression analyses of individual patient data from multiple randomised controlled trials

Affiliations

Treatment-related changes in bone mineral density as a surrogate biomarker for fracture risk reduction: meta-regression analyses of individual patient data from multiple randomised controlled trials

Dennis M Black et al. Lancet Diabetes Endocrinol. 2020 Aug.

Erratum in

Abstract

Background: The validation of bone mineral density (BMD) as a surrogate outcome for fracture would allow the size of future randomised controlled osteoporosis registration trials to be reduced. We aimed to determine the association between treatment-related changes in BMD, assessed by dual-energy x-ray absorptiometry, and fracture outcomes, including the proportion of treatment effect explained by BMD changes.

Methods: We did a pooled analysis of individual patient data from multiple randomised placebo-controlled clinical trials. We included data from multicentre, randomised, placebo-controlled, double-blind trials of osteoporosis medications that included women and men at increased osteoporotic fracture risk. Using individual patient data for each trial we calculated mean 24-month BMD percent change together with fracture reductions and did a meta-regression of the association between treatment-related differences in BMD changes (percentage difference, active minus placebo) and fracture risk reduction. We also used individual patient data to determine the proportion of anti-fracture treatment effect explained by BMD changes and the BMD change needed in future trials to ensure fracture reduction efficacy.

Findings: Individual patient data from 91 779 participants of 23 randomised, placebo-controlled trials were included. The trials had 1-9 years of follow-up and included 12 trials of bisphosphonate, one of odanacatib, two of hormone therapy (one of conjugated equine oestrogen and one of conjugated equine oestrogen plus medroxyprogesterone acetate), three of PTH receptor agonists, one of denosumab, and four of selective oestrogen receptor modulator trials. The meta-regression revealed significant associations between treatment-related changes in hip, femoral neck, and spine BMD and reductions in vertebral (r2 0·73, p<0·0001; 0·59, p=0·0005; 0·61, p=0·0003), hip (0·41, p=0·014; 0·41, p=0·0074; 0·34, p=0·023) and non-vertebral fractures (0·53, p=0·0021; 0·65, p<0·0001; 0·51, p=0·0019). Minimum 24-month percentage changes in total hip BMD providing almost certain fracture reductions in future trials ranged from 1·42% to 3·18%, depending on fracture site. Hip BMD changes explained substantial proportions (44-67%) of treatment-related fracture risk reduction.

Interpretation: Treatment-related BMD changes are strongly associated with fracture reductions across randomised trials of osteoporosis therapies with differing mechanisms of action. These analyses support BMD as a surrogate outcome for fracture outcomes in future randomised trials of new osteoporosis therapies and provide an important demonstration of the value of public access to individual patient data from multiple trials.

Funding: Foundation for National Institutes of Health.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources