Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;48(4):346-353.
doi: 10.2967/jnmt.120.244574. Epub 2020 Jul 24.

Legendre Polynomials: A Fully Automatic Method for Noise Reduction in 99mTc-Mercaptoacetyltriglycine Renogram Analysis

Affiliations
Free article

Legendre Polynomials: A Fully Automatic Method for Noise Reduction in 99mTc-Mercaptoacetyltriglycine Renogram Analysis

Michel Destine et al. J Nucl Med Technol. 2020 Dec.
Free article

Abstract

Our purpose was to develop a fully automatic method to deal with the presence of high levels of noise interfering with quantitative analysis of fast, dynamic mercaptoacetyltriglycine renogram images. Methods: A method based on Legendre polynomials to fit and filter time-activity curves was proposed. The method was applied to a renal database that contains Monte Carlo (MC)-simulated studies and real adult patient data. Clinically relevant parameters such as relative function, time to maximum uptake (Tmax), and half-emptying time (T1/2) were obtained with the proposed method, the 1-2-1 filter (F121) method recommended in the 2018 guidelines of the European Association of Nuclear Medicine, and a state-of-the-art commercial software program (Hermes) currently used in routine nuclear medicine. Results: The root mean squared error between reference time-activity curves and the same curves with Poisson noise added was about 2 times lower for the Legendre method than for F121. The left relative function for MC and patient data was statistically equivalent for Hermes, Legendre, and F121 (P < 0.001). For MC studies, the Legendre technique performed better that the Hermes method regarding the known values of Tmax (P < 0.05), and the T1/2 determination was significantly improved (P < 0.05). For patient data, the Legendre and F121 methods were less influenced by noise in the data than the Hermes method, particularly for T1/2. Conclusion: In dynamic nuclear medicine imaging, Legendre polynomials appear to be a promising, fully automatic noise-removal tool that is routinely applicable, accurate, and robust.

Keywords: Legendre polynomials; MAG3; denoising; renal function; renogram.

PubMed Disclaimer

Substances

LinkOut - more resources