Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec;18(12):677-689.
doi: 10.1038/s41579-020-0413-0. Epub 2020 Jul 24.

Formation and function of bacterial organelles

Affiliations
Review

Formation and function of bacterial organelles

Chris Greening et al. Nat Rev Microbiol. 2020 Dec.

Abstract

Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.

PubMed Disclaimer

References

    1. Saier, M. H. Jr. Microcompartments and protein machines in prokaryotes. J. Mol. Microbiol. Biotechnol. 23, 243–269 (2013).
    1. Cheng, S., Liu, Y., Crowley, C. S., Yeates, T. O. & Bobik, T. A. Bacterial microcompartments: their properties and paradoxes. Bioessays 30, 1084–1095 (2008).
    1. Yeates, T. O., Thompson, M. C. & Bobik, T. A. The protein shells of bacterial microcompartment organelles. Curr. Opin. Struct. Biol. 21, 223–231 (2011).
    1. Kerfeld, C. A. & Erbilgin, O. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 23, 22–34 (2015).
    1. Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104, 238102 (2010).

Publication types

MeSH terms

Substances

Supplementary concepts

LinkOut - more resources