MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing
- PMID: 32711842
- DOI: 10.1016/j.cels.2020.06.010
MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing
Erratum in
-
MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing.Cell Syst. 2020 Oct 21;11(4):418-419. doi: 10.1016/j.cels.2020.09.001. Cell Syst. 2020. PMID: 33091335 No abstract available.
Abstract
Computational prediction of the peptides presented on major histocompatibility complex (MHC) class I proteins is an important tool for studying T cell immunity. The data available to develop such predictors have expanded with the use of mass spectrometry to identify naturally presented MHC ligands. In addition to elucidating binding motifs, the identified ligands also reflect the antigen processing steps that occur prior to MHC binding. Here, we developed an integrated predictor of MHC class I presentation that combines new models for MHC class I binding and antigen processing. Considering only peptides first predicted by the binding model to bind strongly to MHC, the antigen processing model is trained to discriminate published mass spectrometry-identified MHC class I ligands from unobserved peptides. The integrated model outperformed the two individual components as well as NetMHCpan 4.0 and MixMHCpred 2.0.2 on held-out mass spectrometry experiments. Our predictors are implemented in the open source MHCflurry package, version 2.0 (github.com/openvax/mhcflurry).
Keywords: MHC; T cell epitope; antigen processing; epitope prediction.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests The authors declare no competing interests.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
