Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 9;26(69):16241-16245.
doi: 10.1002/chem.202002449. Epub 2020 Nov 3.

Syntheses of Thailandepsin B Pseudo-Natural Products: Access to New Highly Potent HDAC Inhibitors via Late-Stage Modification

Affiliations

Syntheses of Thailandepsin B Pseudo-Natural Products: Access to New Highly Potent HDAC Inhibitors via Late-Stage Modification

Jana Brosowsky et al. Chemistry. .

Abstract

New Thailandepsin B pseudo-natural products have been prepared. Our synthetic strategy offers the possibility to introduce varying warheads via late stage modification. Additionally, it gives access to the asymmetric branched allylic ester moiety of the natural product in a highly diastereoselective manner applying rhodium-catalyzed hydrooxycarbonylation. The newly developed pseudo-natural products are extremely potent and selective HDAC inhibitors. The non-proteinogenic amino acid d-norleucine was obtained enantioselectively by a recently developed method of rhodium-catalyzed hydroamination.

Keywords: asymmetric catalysis; histone deacetylase inhibitors; rhodium; synthetic methods; thailandepsin.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Thailandepsins A‐F and FK228.
Scheme 1
Scheme 1
Reduction of the disulfide in thailandepsins to generate the thiol as zinc binding warhead.
Scheme 2
Scheme 2
Thailandepsin B pseudo‐natural product 8 and retrosynthetic approach: Macrocyclic precursor 9 offers the possibility of late stage modification to introduce varying warheads via cross‐metathesis. Disconnection of 8 via macrolactamization.
Scheme 3
Scheme 3
Retrosynthetic analysis.
Scheme 4
Scheme 4
Synthesis of Fmoc‐protected d‐norleucine via rhodium‐catalyzed hydroamination. a) aq. HCl, Et2O, r.t., 24 h; b) PGCl, Na2CO3, dioxane, 0 °C to r.t., 17 h; c) K2OsO2(OH)4, NMO, acetone, H2O, THF, 18 h, PG=Fmoc 79 %, PG=Cbz 91 %; d) NaIO4, THF/H2O, 2 h; e) NaClO2, NaH2PO4, tBuOH/H2O, PG=Fmoc 1.5 h 70 %, PG=Cbz 20 h, 82 %. NMO=N‐Methylmorpholine N‐oxide.
Scheme 5
Scheme 5
Synthesis of compound 12. a) EDCI*HCl, HOBt, NEt3, DCM, r.t., 18 h, 76 %; b) TFA, Et3SiH, DCM, r.t., 18 h, 81 %. EDCI=1‐Ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide, TFA=trifluoroacetic acid.
Scheme 6
Scheme 6
Synthesis of macrocyclic precursor 8. a) HNEt2 (10 %), DMF, r.t., 5 min; b) 12, HATU, HOBt, DIPEA, DCM, r.t., 24 h; c) HF*pyridine (70 %), pyridine, THF, 0 °C to r.t., 2 h, 58 % over 3 steps; d) Jones reagent, acetone, r.t., 55 sec, 60 %; e) piperidine, DCM, r.t., 45 min, 90 %; f) HATU, DIPEA, DCM (1 mm), r.t., 16 h, 51 %. DIPEA=N,N‐Diisopropylethylamine.
Scheme 7
Scheme 7
Late stage modification of 9. a) HCl, acetone, r.t., 2.5 h, 66 %; b) Grubbs II catalyst (20 mol %), toluene, 80 °C, 18 h, 69 % brsm; c) HCl, acetone, r.t., 3 h, 78 %; d) potassium thioacetate, acetone, r.t., 3 h, 78 %; e) HCl, acetone, r.t., 3 h, 61 %; f) Grubbs II catalyst (20 mol %), toluene, 80 °C, 18 h, 52 % brsm; g) HCl, acetone, r.t., 2.5 h, 58 %; h) TFA, Et3SiH, DCM, r.t., 5 min.

References

    1. None
    1. Wang C., Henkes L. M., Doughty L. B., He M., Wang D., Meyer-Almes F.-J., Cheng Y.-Q., J. Nat. Prod. 2011, 74, 2031–2038; - PMC - PubMed
    1. Cheng Y.-Q., Wang C., US Patent Application 20110060021, 2011.
    1. Wang C., Flemming C. J., Cheng Y.-Q., Med. Chem. Commun. 2012, 3, 976–981. - PMC - PubMed
    1. Biggins J. B., Gleber C. D., Brady S. F., Org. Lett. 2011, 13, 1536–1539. - PMC - PubMed

LinkOut - more resources