Detection and Characterization of Diphtheria Toxin Gene-Bearing Corynebacterium Species through a New Real-Time PCR Assay
- PMID: 32727830
- PMCID: PMC7512153
- DOI: 10.1128/JCM.00639-20
Detection and Characterization of Diphtheria Toxin Gene-Bearing Corynebacterium Species through a New Real-Time PCR Assay
Abstract
Respiratory diphtheria, characterized by a firmly adherent pseudomembrane, is caused by toxin-producing strains of Corynebacterium diphtheriae, with similar illness produced occasionally by toxigenic Corynebacterium ulcerans or, rarely, Corynebacterium pseudotuberculosis While diphtheria laboratory confirmation requires culture methods to determine toxigenicity, real-time PCR (RT-PCR) provides a faster method to detect the toxin gene (tox). Nontoxigenic tox-bearing (NTTB) Corynebacterium isolates have been described, but impact of these isolates on the accuracy of molecular diagnostics is not well characterized. Here, we describe a new triplex RT-PCR assay to detect tox and distinguish C. diphtheriae from the closely related species C. ulcerans and C. pseudotuberculosis Analytical sensitivity and specificity of the assay were assessed in comparison to culture using 690 previously characterized microbial isolates. The new triplex assay characterized Corynebacterium isolates accurately, with 100% analytical sensitivity for all targets. Analytical specificity with isolates was 94.1%, 100%, and 99.5% for tox, Diph_rpoB, and CUP_rpoB targets, respectively. Twenty-nine NTTB Corynebacterium isolates, representing 5.9% of 494 nontoxigenic isolates tested, were detected by RT-PCR. Whole-genome sequencing of NTTB isolates revealed varied mutations putatively underlying their lack of toxin production, as well as eight isolates with no mutation in tox or the promoter region. This new Corynebacterium RT-PCR method provides a rapid tool to screen isolates and identify probable diphtheria cases directly from specimens. However, the sporadic occurrence of NTTB isolates reinforces the viewpoint that diphtheria culture diagnostics continue to provide the most accurate case confirmation.
Keywords: Corynebacterium; diphtheria; diphtheria toxin; diphtheriae; real-time PCR; ulcerans.
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
References
-
- Roush SW, Baldy LM, Kirkconnell Hall MA (ed), Manual for the surveillance of vaccine-preventable diseases. Centers for Disease Control and Prevention, Atlanta, GA: https://www.cdc.gov/vaccines/pubs/surv-manual/. Accessed 17 December 2019.
-
- De Zoysa A, Hawkey PM, Engler K, George R, Mann G, Reilly W, Taylor D, Efstratiou A. 2005. Characterization of toxigenic Corynebacterium ulcerans strains isolated from humans and domestic cats in the United Kingdom. J Clin Microbiol 43:4377–4381. doi:10.1128/JCM.43.9.4377-4381.2005. - DOI - PMC - PubMed
-
- Centers for Disease Control and Prevention. 2004. Fatal respiratory diphtheria in a U.S. traveler to Haiti—Pennsylvania, 2003. MMWR Morb Mortal Wkly Rep 52:1285–1286. - PubMed
-
- Du Plessis M, Wolter N, Allam M, de Gouveia L, Moosa F, Ntshoe G, Blumberg L, Cohen C, Smith M, Mutevedzi P, Thomas J, Horne V, Moodley P, Archary M, Mahabeer Y, Mahomed S, Kuhn W, Mlisana K, McCarthy K, von Gottberg A. 2017. Molecular characterization of Corynebacterium diphtheriae outbreak isolates, South Africa, March-June 2015. Emerg Infect Dis 23:1308–1315. doi:10.3201/eid2308.162039. - DOI - PMC - PubMed
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
