Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 29;10(1):12732.
doi: 10.1038/s41598-020-69286-3.

Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care

Affiliations

Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care

Joshua L Santarpia et al. Sci Rep. .

Erratum in

Abstract

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
A Box and whisker plot demonstrating the max and min (whiskers), median (line) and 25th and 75th percentile gene copy concentrations (copies/µL) for all types of samples collected in this study. Data is presented as a concentration in recovered buffer (sterile PBS) for each sample. Surface samples were in a total of 18 mL (3 mL to pre-moisten and 15 mL to recover), bedroom air and hallway air samples were recovered in 15 mL total, while personal air samples were recovered in 10 mL of sterile PBS. B Percentage of positive samples recovered in each room sampling. Bar patterns from the same room and same individual on multiple dates are identical.
Figure 2
Figure 2
Results of SARS-CoV-2 cell culture experiments. Images and graphs describe the results of cell culture of two environmental samples. The two samples are shown: an air sample from the NQU hallway on day 8 (A,C,E), the windowsill from NQU A on day 1 (B,D,F). Cytopathic effect observed in these samples (A,B) is generally mild, compared to the control (top center) which had no environmental sample added. RT-qPCR from daily withdrawals of 100 µL of supernatant from the cell culture of each sample indicates changes in viral RNA in the supernatant throughout cultivation. The hallway air sample indicates a decrease in RNA concentration in the supernatant over the first 2 days, consistent with the withdrawal of supernatant for analysis. Increase in concentration is observed on both days 3 and 4 (C). The windowsill sample showed stable and possible increasing viral concentrations for the first 3 days, despite the withdrawal of supernatant for analysis (D). Immunofluorescent staining of the hallway air sample indicates the presence of SARS-CoV-2, after 3 days of cell culture (E), as compared to control cells (inset), which were not exposed to any environmental sample. TEM images of the lysates from the windowsill culture (F) clearly indicate the presence of intact SARS-CoV-2 virions, after 3 days of cell culture.

References

    1. Zhu N, et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017. - DOI - PMC - PubMed
    1. Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect. Dis. 2019;19:101. doi: 10.1186/s12879-019-3707-y. - DOI - PMC - PubMed
    1. Booth TF, et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 2005;191:1472–1477. doi: 10.1086/429634. - DOI - PMC - PubMed
    1. Omrani AS, et al. A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int. J. Infect. Dis. 2013;17:668–672. doi: 10.1016/j.ijid.2013.07.001. - DOI - PMC - PubMed
    1. Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection in Indoor Air 2005. In: Proceedings of the 10th International Conference on Indoor Air Quality and Climate (eds Yang, X., Zhao, B. & Zhao, R.) 9–23 (Tsinghua University Press, 2006). - PubMed

Publication types

MeSH terms