Influence of glioblastoma contact with the subventricular zone on survival and recurrence patterns
- PMID: 32728970
- DOI: 10.1007/s12094-020-02448-x
Influence of glioblastoma contact with the subventricular zone on survival and recurrence patterns
Abstract
Background: There is growing evidence that the subventricular zone (SVZ) may be involved in both the initiation and progression of glioblastoma (GB). We aimed to assess tumor proximity to the SVZ as a potential prognostic factor in GB.
Method: Retrospective study of 133 patients diagnosed with primary GB who underwent surgery followed by temozolomide-based chemoradiation between 2010 and 2016. All lesions were classified according to their anatomic relation with the SVZ. We determined the effect of tumor contact with the SVZ on progression-free survival (PFS), overall survival (OS), type, and patterns of recurrence.
Results: At a median follow-up of 18.6 months (95% CI 15.9-21.2), PFS and OS were 7.5 (95% CI 6.7-8.3) and 13.9 (95% CI 10.9-16.9) months, respectively. On the univariate analyses, initial contact with the SVZ was a factor for poor prognosis for both PFS (6.1 vs. 8.7 months; p = 0.006) and OS (10.6 vs. 17.9 months; p = 0.037). On the multivariate analysis, tumor contact with the SVZ remained statistically significant for PFS, but not OS. Patients with SVZ-contacting tumors presented a higher rate of aggressive clinical progression (30.9% vs. 11.3%; p = 0.007) and contralateral relapse patterns (23.4% vs. 9.1%; p = 0.048).
Conclusions: Our results suggest that glioblastoma contact with the SVZ appears to be an independent prognostic factor for poor PFS. The presence of an SVZ-contacting tumor was associated with more aggressive recurrences and a higher rate of contralateral relapses. These findings suggest that this variable may be a new prognostic factor in glioblastoma.
Keywords: Cancer stem cell; Glioblastoma; Prognostic factor; Subventricular zone; Tumor location.
References
-
- Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncology. 2016;18(suppl_5):v1–v75. - DOI
-
- Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. - DOI
-
- Alcantara Llaguno SR, Parada LF. Cell of origin of glioma: biological and clinical implications. Br J Cancer. 2016;115(12):1445–500. - DOI
-
- Liu C, Sage JC, Miller MR, Verhaak RGW, Hippenmeyer S, Vogel H, et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146(2):209–21. - DOI
-
- Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical