Detection, segmentation, simulation and visualization of aortic dissections: A review
- PMID: 32738647
- DOI: 10.1016/j.media.2020.101773
Detection, segmentation, simulation and visualization of aortic dissections: A review
Abstract
Aortic dissection (AD) is a condition of the main artery of the human body, resulting in the formation of a new flow channel, or false lumen. The disease is usually diagnosed with a computed tomography angiography scan during the acute phase. A better understanding of the causes of AD requires knowledge of the aortic geometry (segmentation), including the true and false lumina, which is very time-consuming to reconstruct when performed manually on a slice-by-slice basis. Hence, different automatic and semi-automatic medical image analysis approaches have been proposed for this task over the last years. In this review, we present and discuss these computing techniques used to segment dissected aortas, also in regard to the detection and visualization of clinically relevant information and features from dissected aortas for customized patient-specific treatments.
Keywords: Aorta; Computed tomography; Detection; Dissection; Segmentation; Simulation; Visualization.
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources