Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 27;39(14):2594-2601.
doi: 10.1021/acs.organomet.0c00167. Epub 2020 Apr 24.

Synthesis, Characterization, and Catalytic Reactivity of {CoNO}8 PCP Pincer Complexes

Affiliations

Synthesis, Characterization, and Catalytic Reactivity of {CoNO}8 PCP Pincer Complexes

Jan Pecak et al. Organometallics. .

Abstract

The reaction of coordinatively unsaturated Co(II) PCP pincer complexes with nitric oxide leads to the formation of new, air-stable, diamagnetic mono nitrosyl compounds. The synthesis and characterization of five- and four-coordinate Co(III) and Co(I) nitrosyl pincer complexes based on three different ligand scaffolds is described. Passing NO through a solution of [Co(PCPNMe-iPr)Cl], [Co(PCPO-iPr)Cl] or [Co(PCPCH2-iPr)Br] led to the formation of the low-spin complex [Co(PCP-iPr)(NO)X] with a strongly bent NO ligand. Treatment of the latter species with (X = Cl, Br) AgBF4 led to chloride abstraction and formation of cationic square-planar Co(I) complexes of the type [Co(PCP-iPr)(NO)]+ featuring a linear NO group. This reaction could be viewed as a formal two electron reduction of the metal center by the NO radical from Co(III) to Co(I), if NO is counted as NO+. Hence, these systems can be described as {CoNO}8 according to the Enemark-Feltham convention. X-ray structures, spectroscopic and electrochemical data of all nitrosyl complexes are presented. Preliminary studies show that [Co(PCPNMe-iPr)(NO)]+ catalyzes efficiently the reductive hydroboration of nitriles with pinacolborane (HBpin) forming an intermediate {CoNO}8 hydride species.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1. Examples of Group 9 Nitrosyl Pincer Complexes
Figure 1
Figure 1
Structural view of 1b showing 50% displacement ellipsoids (H atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: Co1–C1 1.9131(9), Co1–Cl1 2.2258(4), Co1–P1 2.1879(4), Co1–P2 2.1898(3), P1–Co1–P2 162.90(1), C1–Co1–Cl1 178.88(5).
Figure 2
Figure 2
Structural view of 1c showing 50% displacement ellipsoids (H atoms and a second independent complex omitted for clarity). Selected bond lengths [Å] and angles [°]: Co1–C1 1.955(1), Co1–Br1 2.3764(2), Co1–P1 2.2077(4), Co1–P2 2.2124(4), P1–Co1–P2 169.39(2), C1–Co1–Br1 177.49(4).
Scheme 1
Scheme 1. Synthesis of Complexes 2ac
Figure 3
Figure 3
Structural view of 2a showing 50% displacement ellipsoids (H atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: Co1–Cl1 2.2947(12), Co1–C1 1.959(2), Co1–P1 2.227(1), Co1–P2 2.236(1), Co1–N3 1.736(2), N3–O1 1.164(3), P1–Co1–P2 155.88(2), C1–Co1–Cl1 151.25(6), Co1–N3–O1 140.1(2).
Figure 4
Figure 4
Structural view of 2b showing 50% displacement ellipsoids (H atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: Co1–Cl1 2.2823(5), Co1–C1 1.939(2), Co1–P1 2.2298(5), Co1–P2 2.2070(5), Co1–N1 1.726(1), N1–O3 1.176(2), P2–Co1–P1 154.58(2), C1–Co1–Cl1 150.69(5), Co1–N1–O3 140.2(1).
Figure 5
Figure 5
SEC-IR experiments with [Co(PCPNMe-iPr)(NO)Cl] (2a, 5 mM in CH2Cl2) at 1.00 V vs Ag pseudoreference electrode. The absorption at 1654 cm–1, typical for a bent NO alignment, gradually shifts to a new resonance at 1771 cm–1 typical of a linear NO coordination mode (OCP = Open Circuit Potential).
Figure 6
Figure 6
HOMO of [Co(PCPNMe-iPr)(NO)Cl] (2a, left) and the calculated spin density in open-shell [Co(PCPNMe-iPr)(NO)Cl]+ obtained after electrochemical oxidation (right).
Scheme 2
Scheme 2. Synthesis of Complexes 3a and 3b
Figure 7
Figure 7
Structural view of 3a showing 50% displacement ellipsoids (H atoms and counterion omitted for clarity). Selected bond lengths [Å] and angles [°]: Co1–C1 1.929(4), Co1–P1 2.2086(11), Co1–P2 2.202(1), Co1–N3 1.631(3), N3–O1 1.173(4), P2–Co1–P1 164.57(4), C1–Co1–N3 176.0(2), Co1–N3–O1 176.6(3).
Figure 8
Figure 8
Structural view of 3b showing 50% displacement ellipsoids (H atoms and counterion omitted for clarity). Selected bond lengths [Å] and angles [°]: Co1–C1 1.932(2), Co1–P1 2.2042(8), Co1–P2 2.2023(7), Co1–N1 1.635(2), N3–O1 1.162(2), P2–Co1–P1 159.68(3), C1–Co1–N1 175.1(1), Co1–N1–O3 177.3(2).
Scheme 3
Scheme 3. Alternative Synthesis of Complex 3a

References

    1. For reviews on pincer complexes, see:

    2. Gossage R. A.; van de Kuil L. A.; van Koten G. Diaminoarylnickel(II) “pincer” complexes: mechanistic consideration in the Kharasch addition reaction, controlled polymerization, and dendrimeric transition metal catalysis. Acc. Chem. Res. 1998, 31, 423–431. 10.1021/ar970221i. - DOI
    3. Albrecht M.; van Koten G. Platinum group organometallics based on “Pincer” complexes: sensors, switches, and catalysts in memory of Prof. Dr. Luigi M. Venanzi and his pioneering work in organometallic chemistry, particularly in PCP pincer chemistry. Angew. Chem., Int. Ed. 2001, 40, 3750–3781. 10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6. - DOI - PubMed
    4. van der Boom M. E.; Milstein D. Cyclometalated phosphine-based pincer complexes: mechanistic insight in catalysis, coordination, and bond activation. Chem. Rev. 2003, 103, 1759–1792. 10.1021/cr960118r. - DOI - PubMed
    5. Singleton J. T. The uses of pincer complexes inorganic synthesis. Tetrahedron 2003, 59, 1837–1857. 10.1016/S0040-4020(02)01511-9. - DOI
    6. Liang L. C. Metal complexes of chelating diarylamido phosphine ligands. Coord. Chem. Rev. 2006, 250, 1152–1177. 10.1016/j.ccr.2006.01.001. - DOI
    7. The Chemistry of Pincer Compounds; Morales-Morales D., Jensen C. M.; Eds.; Elsevier: Amsterdam, 2007.
    8. Nishiyama H. Synthesis and use of bisoxazolinyl-phenyl pincers. Chem. Soc. Rev. 2007, 36, 1133–1141. 10.1039/b605991k. - DOI - PubMed
    9. Benito-Garagorri D.; Kirchner K. Modularly Designed Transition Metal PNP and PCP Pincer Complexes Based on Aminophosphines: Synthesis and Catalytic Applications. Acc. Chem. Res. 2008, 41, 201–213. 10.1021/ar700129q. - DOI - PubMed
    10. Choi J.; MacArthur A. H. R.; Brookhart M.; Goldman A. S. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev. 2011, 111, 1761–1779. 10.1021/cr1003503. - DOI - PubMed
    11. Selander N.; Szabo K. J. Catalysis by Palladium Pincer Complexes. Chem. Rev. 2011, 111, 2048–2076. 10.1021/cr1002112. - DOI - PubMed
    12. Bhattacharya P.; Guan H. Synthesis and Catalytic Applications of Iron Pincer Complexes. Comments Inorg. Chem. 2011, 32, 88–112. 10.1080/02603594.2011.618855. - DOI
    13. Schneider S.; Meiners J.; Askevold B. Cooperative Aliphatic PNP Amido Pincer Ligands - Versatile Building Blocks for Coordination Chemistry and Catalysis. Eur. J. Inorg. Chem. 2012, 2012, 412–429. 10.1002/ejic.201100880. - DOI
    14. Organo-metallic Pincer Chemistry; van Koten G., Milstein D., Eds.; Springer: Berlin, 2013; Topics in Organometallic Chemistry, Vol. 40.
    15. Szabo K. J.; Wendt O. F.. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis; Wiley-VCH: Weinheim, Germany, 2014.
    16. Asay M.; Morales-Morales D. Non-symmetric pincer ligands: complexes and applications in catalysis. Dalton Trans. 2015, 44, 17432–17447. 10.1039/C5DT02295A. - DOI - PubMed
    17. Murugesan S.; Kirchner K. Non-precious metal complexes with an anionic PCP pincer architecture. Dalton Trans. 2016, 45, 416–439. 10.1039/C5DT03778F. - DOI - PubMed
    1. Moulton C. J.; Shaw B. L. Transition metal-carbon Bonds, Part XLII. Complexes of Nickel, Palladium, Platinum, Rhodium and Iridium with the Tridentate Ligand 2,6-bis[(di-t-butylphosphino)]phenyl. J. Chem. Soc., Dalton Trans. 1976, 1020–1024. 10.1039/DT9760001020. - DOI
    1. For reviews on nitric oxide as ligand:

    2. McCleverty J. A. Chemistry of Nitric Oxide Relevant to Biology. Chem. Rev. 2004, 104, 403–418. 10.1021/cr020623q. - DOI - PubMed
    3. Roncaroli F.; Videla M.; Slep L. D.; Olabe J. A. New features in the redox coordination chemistry of metal nitrosyls {M-NO+; M-NO; M-NO– (HNO)}. Coord. Chem. Rev. 2007, 251, 1903–1930. 10.1016/j.ccr.2007.04.012. - DOI
    4. Hayton T. W.; Legzdins P.; Sharp W. B. Coordination and Organometallic Chemistry of Metal-NO Complexes. Chem. Rev. 2002, 102, 935–992. 10.1021/cr000074t. - DOI - PubMed
    5. Ford P. C.; Lorkovic I. M. Mechanistic Aspects of the Reactions of Nitric Oxide with Transition-Metal Complexes. Chem. Rev. 2002, 102, 993–1018. 10.1021/cr0000271. - DOI - PubMed
    6. Kaim W.; Schwederski B. Non-innocent ligands in bioinorganic chemistry – An overview. Coord. Chem. Rev. 2010, 254, 1580–1588. 10.1016/j.ccr.2010.01.009. - DOI
    1. Enemark J. H.; Feltham R. D. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 1974, 13, 339–406. 10.1016/S0010-8545(00)80259-3. - DOI
    1. Gaviglio C.; Ben-David Y.; Shimon L. J. W.; Doctorovich F.; Milstein D. Synthesis, Structure, and Reactivity of Nitrosyl Pincer-Type Rhodium Complexes. Organometallics 2009, 28, 1917–1926. 10.1021/om8011536. - DOI
    2. Pellegrino J.; Gaviglio C.; Milstein D.; Doctorovich F. Electron Transfer Behavior of Pincer-Type {RhNO}8 Complexes: Spectroscopic Characterization and Reactivity of Paramagnetic {RhNO}9 Complexes. Organometallics 2013, 32, 6555–6564. 10.1021/om4008746. - DOI

LinkOut - more resources