Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2020 Nov;30(9):672-678.
doi: 10.1080/15376516.2020.1805836. Epub 2020 Aug 26.

Predicting the mutagenic potential of chemicals in tobacco products using in silico toxicology tools

Affiliations
Comparative Study

Predicting the mutagenic potential of chemicals in tobacco products using in silico toxicology tools

Reema Goel et al. Toxicol Mech Methods. 2020 Nov.

Abstract

Tobacco products contain thousands of chemicals, including addictive and toxic chemicals. We utilized in silico toxicology tools to predict in a validation test and in a separate screening test, the mutagenic potential of chemicals reported in tobacco products and tobacco smoke. Different publicly available (quantitative) structure-activity relationship (Q)SAR software platforms were used in this study. The models were validated against 900 chemicals relevant to tobacco for which experimental Ames mutagenicity data are available from public sources. The predictive performance of the individual and combined (Q)SAR models was evaluated using various performance metrics. All the (Q)SAR models represented >95% of the tobacco chemical space indicating a high potential for screening tobacco products. All the models performed well and predicted mutagens and nonmutagens with 75-95% accuracy, 66-94% sensitivity and 73-97% specificity. Subsequently, in a screening test, a combination of complementary SAR-based and QSAR-based models was used to predict the mutagenicity of 6820 chemicals catalogued in tobacco products and/or tobacco smoke. More than 1200 chemicals identified in tobacco products are predicted to have mutagenic potential, with 900 potential mutagens in tobacco smoke. This research demonstrates the validity of in silico (Q)SAR tools to make mutagenicity predictions for chemicals in tobacco products and/or tobacco smoke, and suggest they hold utility as screening tools for hazard identification to inform tobacco regulatory science.

Keywords: In silico toxicology; QSAR; SAR; mutagenicity; tobacco products.

PubMed Disclaimer