Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 4;12(1):91.
doi: 10.1186/s13195-020-00658-7.

The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer's disease

Affiliations

The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer's disease

Yu-Wen Cheng et al. Alzheimers Res Ther. .

Abstract

Background: Optimization of vascular risk factor control is emerging as an alternative approach to improve cognitive outcomes in Alzheimer's disease, although its efficacy is still under debate. We aimed to investigate the contribution of vascular risk factors on Alzheimer's biomarkers and conversion rate to dementia in subjects with mild cognitive impairment (MCI) with low cerebral small vessel disease burden.

Methods: Two hundred ninety-five newly diagnosed MCI subjects were enrolled from March 2005 to May 2017 for a cross-sectional assessment of vascular risk factors and Alzheimer's plasma and imaging biomarkers, followed by a cognitive outcome assessment 24 months after enrollment. The association between vascular risk factors and Alzheimer's biomarkers were tested using multivariable linear regression models adjusted with age, gender, education, and APOE ε4 allele. The association between vascular risk factors and conversion to dementia was tested using multivariable logistic regression models adjusted with age, gender, education, and baseline Mini-Mental State Examination (MMSE) score.

Results: At baseline, higher low-density lipoprotein (LDL) cholesterol level was associated with more advanced plasma biomarkers, including Aβ42/Aβ40 ratio (P = 0.012) and tau level (P = 0.001). A history of hypertension was associated with more advanced white matter hyperintensity (P = 0.011), while statin therapy for dyslipidemia was associated with less advanced white matter hyperintensity (P = 0.002). At 24 months, individual vascular risk factor was not significantly associated with cognitive outcome. By contrast, statin therapy for dyslipidemia was associated with reduced conversion to dementia (adjusted OR = 0.191, 95% CI = 0.062~0.586, P = 0.004).

Conclusions: For MCI subjects, dyslipidemia may contribute to AD-related neurodegeneration while hypertension may contribute to vascular pathology. The association between statin therapy for dyslipidemia and reduced conversion to dementia supports further interventional study to evaluate the potential beneficial effect of statin in MCI subjects.

Keywords: Alzheimer’s disease (AD); Low-density lipoprotein (LDL) cholesterol; Mild cognitive impairment (MCI); Plasma biomarkers; Vascular risk factors.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The association between LDL cholesterol level and plasma biomarkers. Serum LDL cholesterol level was positively associated with plasma Aβ42/Aβ40 ratio (a) and plasma tau (b). LDL, low-density lipoprotein; Aβ, amyloid beta
Fig. 2
Fig. 2
Proposed contribution of vascular risk factors to Alzheimer’s disease. For MCI subjects, dyslipidemia may contribute Alzheimer’s disease-specific neurodegeneration, and hypertension may contribute cerebrovascular pathology. Statin therapy may be beneficial for long-term cognitive outcome

References

    1. Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106. - PMC - PubMed
    1. Madav Y, Wairkar S, Prabhakar B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res Bull. 2019;146:171–184. - PubMed
    1. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med. 2014;275(3):251–283. - PMC - PubMed
    1. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–716. - PubMed
    1. O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98. - PubMed

Publication types