Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 10:14:267.
doi: 10.3389/fnhum.2020.00267. eCollection 2020.

Semantic Processing in Autism Spectrum Disorders Is Associated With the Timing of Language Acquisition: A Magnetoencephalographic Study

Affiliations

Semantic Processing in Autism Spectrum Disorders Is Associated With the Timing of Language Acquisition: A Magnetoencephalographic Study

Banu Ahtam et al. Front Hum Neurosci. .

Abstract

Individuals with autism show difficulties in using sentence context to identify the correct meaning of ambiguous words, such as homonyms. In this study, the brain basis of sentence context effects on word understanding during reading was examined in autism spectrum disorder (ASD) and typical development (TD) using magnetoencephalography. The correlates of a history of developmental language delay in ASD were also investigated. Event related field responses at early (150 ms after the onset of a final word) and N400 latencies are reported for three different types of sentence final words: dominant homonyms, subordinate homonyms, and unambiguous words. Clear evidence for semantic access was found at both early and conventional N400 latencies in both TD participants and individuals with ASD with no history of language delay. By contrast, modulation of evoked activity related to semantic access was weak and not significant at early latencies in individuals with ASD with a history of language delay. The reduced sensitivity to semantic context in individuals with ASD and language delay was accompanied by strong right hemisphere lateralization at early and N400 latencies; such strong activity was not observed in TD individuals and individuals with ASD without a history of language delay at either latency. These results provide new evidence and support for differential neural mechanisms underlying semantic processing in ASD, and indicate that delayed language acquisition in ASD is associated with different lateralization and processing of language.

Keywords: N400; autism; language; magnetoencephalography; semantics.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
(A) Global activations (RMS-curves) for three final words (dominant homonym, subordinate homonym, and unambiguous word) in TD and ASD groups. (B) Global activations (RMS-curves) for three final word conditions in NLD and LD groups.
FIGURE 2
FIGURE 2
(A) First row: Local RMS-maps for the TD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 150 ms. Second row: Local RMS-maps for the ASD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 150 ms. (B) First row: TD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 150 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 150 ms. Second row: ASD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 150 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 150 ms. (C) Mann–Whitney U analysis result for TD vs. ASD groups’ responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 150 ms. For the presentation of data, the detectors have been projected into two dimensions (right ear on the right, front at the top).
FIGURE 3
FIGURE 3
(A) First row: Local RMS-maps for the NLD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 150 ms. Second row: Local RMS-maps for the LD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 150 ms. (B) First row: NLD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 150 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 150 ms. Second row: LD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 150 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 150 ms. (C) Mann–Whitney U analysis result for NLD vs. LD groups’ responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 150 ms. For the presentation of data, the detectors have been projected into two dimensions (right ear on the right, front at the top).
FIGURE 4
FIGURE 4
(A) First row: Local RMS-maps for the TD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 400 ms. Second row: Local RMS-maps for the ASD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 400 ms. (B) First row: TD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 400 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 400 ms. Second row: ASD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 400 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 400 ms. (C) Mann–Whitney U analysis result for TD vs. ASD groups’ responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 400 ms. For the presentation of data, the detectors have been projected into two dimensions (right ear on the right, front at the top).
FIGURE 5
FIGURE 5
(A) First row: Local RMS-maps for the NLD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 400 ms. Second row: Local RMS-maps for the LD group’s responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 400 ms. (B) First row: NLD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 400 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 400 ms. Second row: LD group’s Friedman analysis result for dominant homonym, subordinate homonym, and unambiguous word at 400 ms. Wilcoxon pairwise analysis result of dominant homonym and subordinate homonym, dominant homonym and unambiguous word, and subordinate homonym and unambiguous word at 400 ms. (C) Mann–Whitney U analysis result for NLD vs. LD groups’ responses to final words (dominant homonym, subordinate homonym, and unambiguous word) at 400 ms. For the presentation of data, the detectors have been projected into two dimensions (right ear on the right, front at the top).
FIGURE 6
FIGURE 6
(A) Top row: TD group’s local RMS-maps for dominant homonym, subordinate homonym, and unambiguous word at 450 ms. Bottom row: ASD group’s local RMS-maps for dominant homonym, subordinate homonym, and unambiguous word at 450 ms. (B) Top row: NLD group’s local RMS-maps for dominant homonym, subordinate homonym, and unambiguous word at 450 ms. Bottom row: LD group’s local RMS-maps for dominant homonym, subordinate homonym, and unambiguous word at 450 ms. For the presentation of data, the detectors have been projected into two dimensions (right ear on the right, front at the top).

References

    1. Ahtam B. (2009). A Magnetoencephalographic Study of Contextual Effects on Semantic Processing in Autism Spectrum Disorders. Ph. D. Thesis, University of Oxford, Oxford.
    1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-V). Washington, DC: American Psychiatric Association.
    1. Assadollahi R., Pulvermuller F. (2003). Early influences of word length and frequency: a group study using MEG. Neuroreport 14 1183–1187. 10.1097/01.wnr.0000075305.76650.60 - DOI - PubMed
    1. Baayen R. H., Piepenbrock R., Gulikers L. (1995). The CELEX Lexical Database. Philadelphia, PA: Linguistic Data Consortium.
    1. Bailey A. J., Braeutigam S., Swithenby S. J. (2000). “Context and reading: A MEG study of autistic adults,” in Proceedings of the 12th International Conference on Biomagnetism, (Espoo: Helsinki University of Technology; ).

LinkOut - more resources