Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul;32(7):2809-2824.
doi: 10.1109/TNNLS.2020.3009047. Epub 2021 Jul 6.

A Survey of Stochastic Computing Neural Networks for Machine Learning Applications

Review

A Survey of Stochastic Computing Neural Networks for Machine Learning Applications

Yidong Liu et al. IEEE Trans Neural Netw Learn Syst. 2021 Jul.

Abstract

Neural networks (NNs) are effective machine learning models that require significant hardware and energy consumption in their computing process. To implement NNs, stochastic computing (SC) has been proposed to achieve a tradeoff between hardware efficiency and computing performance. In an SC NN, hardware requirements and power consumption are significantly reduced by moderately sacrificing the inference accuracy and computation speed. With recent developments in SC techniques, however, the performance of SC NNs has substantially been improved, making it comparable with conventional binary designs yet by utilizing less hardware. In this article, we begin with the design of a basic SC neuron and then survey different types of SC NNs, including multilayer perceptrons, deep belief networks, convolutional NNs, and recurrent NNs. Recent progress in SC designs that further improve the hardware efficiency and performance of NNs is subsequently discussed. The generality and versatility of SC NNs are illustrated for both the training and inference processes. Finally, the advantages and challenges of SC NNs are discussed with respect to binary counterparts.

PubMed Disclaimer

Publication types

LinkOut - more resources