Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 26;64(5):779-790.
doi: 10.1042/EBC20190093.

Mechanism and significance of chromosome damage repair by homologous recombination

Affiliations
Review

Mechanism and significance of chromosome damage repair by homologous recombination

Ajinkya S Kawale et al. Essays Biochem. .

Abstract

Homologous recombination (HR) is a major, conserved pathway of chromosome damage repair. It not only fulfills key functions in the removal of deleterious lesions such as DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs), but also in replication fork repair and protection. Several familial and acquired cancer predisposition syndromes stem from defects in HR. In particular, individuals with mutations in HR genes exhibit predisposition to breast, ovarian, pancreatic, and prostate cancers, and they also show signs of accelerated aging. However, aberrant and untimely HR events can lead to the loss of heterozygosity, genomic rearrangements, and cytotoxic nucleoprotein intermediates. Thus, it is critically important that HR be tightly regulated. In addition to DNA repair, HR is also involved in meiotic chromosome segregation and telomere maintenance in cells that lack telomerase. In this review, we focus on the role of HR in DSB repair (DSBR) and summarize the current state of the field.

Keywords: DNA end resection; DNA repair pathway choice; Homologous Recombination.

PubMed Disclaimer

Publication types

LinkOut - more resources