Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;584(7820):279-285.
doi: 10.1038/s41586-020-2586-0. Epub 2020 Aug 5.

Position-specific oxidation of miR-1 encodes cardiac hypertrophy

Affiliations

Position-specific oxidation of miR-1 encodes cardiac hypertrophy

Heeyoung Seok et al. Nature. 2020 Aug.

Abstract

In pathophysiology, reactive oxygen species oxidize biomolecules that contribute to disease phenotypes1. One such modification, 8-oxoguanine2 (o8G), is abundant in RNA3 but its epitranscriptional role has not been investigated for microRNAs (miRNAs). Here we specifically sequence oxidized miRNAs in a rat model of the redox-associated condition cardiac hypertrophy4. We find that position-specific o8G modifications are generated in seed regions (positions 2-8) of selective miRNAs, and function to regulate other mRNAs through o8G•A base pairing. o8G is induced predominantly at position 7 of miR-1 (7o8G-miR-1) by treatment with an adrenergic agonist. Introducing 7o8G-miR-1 or 7U-miR-1 (in which G at position 7 is substituted with U) alone is sufficient to cause cardiac hypertrophy in mice, and the mRNA targets of o8G-miR-1 function in affected phenotypes; the specific inhibition of 7o8G-miR-1 in mouse cardiomyocytes was found to attenuate cardiac hypertrophy. o8G-miR-1 is also implicated in patients with cardiomyopathy. Our findings show that the position-specific oxidation of miRNAs could serve as an epitranscriptional mechanism to coordinate pathophysiological redox-mediated gene expression.

PubMed Disclaimer

Comment in

References

    1. Burgoyne, J. R., Mongue-Din, H., Eaton, P. & Shah, A. M. Redox signaling in cardiac physiology and pathology. Circ. Res. 111, 1091–1106 (2012). - DOI
    1. Kasai, H. & Nishimura, S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 12, 2137–2145 (1984). - DOI
    1. Simms, C. L. & Zaher, H. S. Quality control of chemically damaged RNA. Cell. Mol. Life Sci. 73, 3639–3653 (2016). - DOI
    1. Frey, N. & Olson, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65, 45–79 (2003). - DOI
    1. Freudenthal, B. D. et al. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 517, 635–639 (2015). - DOI

Publication types

MeSH terms