Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul 14:11:1443.
doi: 10.3389/fimmu.2020.01443. eCollection 2020.

Biomarkers in the Diagnosis and Prognosis of Sarcoidosis: Current Use and Future Prospects

Affiliations
Review

Biomarkers in the Diagnosis and Prognosis of Sarcoidosis: Current Use and Future Prospects

Raisa Kraaijvanger et al. Front Immunol. .

Abstract

Sarcoidosis is a heterogeneous disease in terms of presentation, duration, and severity. Due to this heterogeneity, it is difficult to align treatment decisions. Biomarkers have proved to be useful for the diagnosis and prognosis of many diseases, and over the years, many biomarkers have been proposed to facilitate diagnosis, prognosis, and treatment decisions. Unfortunately, the ideal biomarker for sarcoidosis has not yet been discovered. The most commonly used biomarkers are serum and bronchoalveolar lavage biomarkers, but these lack the necessary specificity and sensitivity. In sarcoidosis, therefore, a combination of these biomarkers is often used to establish a proper diagnosis or detect possible progression. Other potential biomarkers include imaging tools and cell signaling pathways. Fluor-18-deoxyglucose positron emission tomography and high-resolution computed tomography have been proven to be more sensitive for the diagnosis and prognosis of both pulmonary and cardiac sarcoidosis than the serum biomarkers ACE and sIL-2R. There is an upcoming role for exploration of signaling pathways in sarcoidosis pathogenesis. The JAK/STAT and mTOR pathways in particular have been investigated because of their role in granuloma formation. The activation of these signaling pathways also proved to be a specific biomarker for the prognosis of sarcoidosis. Furthermore, both imaging and cell signaling biomarkers also enable patients who might benefit from a particular type of treatment to be distinguished from those who will not. In conclusion, the diagnostic and prognostic path of sarcoidosis involves many different types of existing and new biomarker. Research addressing biomarkers and disease pathology is ongoing in order to find the ideal sensitive and specific biomarker for this disease.

Keywords: biomarkers; bronchoalveolar lavage; future biomarkers; imaging biomarkers; sarcoidosis; serum.

PubMed Disclaimer

Figures

Figure 1
Figure 1
An integrated overview of serum and bronchoalveolar lavage fluid biomarkers produced by cells of the innate and adaptive immune system, involved in the formation of granulomas in sarcoidosis. The sarcoidosis granuloma consists of a tightly formed core of epithelioid and multinucleated-giant cells (MGCs) encircled especially by T helper (Th) cells, but also by B cells, macrophages and dendritic cells (DCs). During this granuloma formation a variety of biomarkers is released by these inflammatory cells. Macrophages are key players in granuloma formation and produce a number of inflammatory biomarkers [e.g., serum angiotensin-converting enzyme (sACE), lysozyme, neopterin, CD163, C-C motive chemokine ligand 18 (CCL18), serum amyloid A (SAA)]. Macrophages activate T-cells by presenting a triggering antigen, which results in an upregulated expression of soluble interleukin 2 receptor (sIL-2R). Apart from T-cells, B-cells also have shown to play a role in granuloma formation. Crucial for the B-cell maturation and function is the biomarker B-cell activating factor (BAFF). All these biomarkers may be useful for the diagnosis and prognosis of sarcoidosis. Figure created with Biorender.com.
Figure 2
Figure 2
(A) 18F-fluorodeoxyglucose (FDG) by positron emission tomography (PET) activity and improvement in pulmonary function. Correlation between high activity of pulmonary parenchyma on 18F-FDG PET (maximum standardized uptake value [SUVmax]) at baseline and improvement in forced vital capacity (FVC) in patients with a pulmonary treatment indication (R = 0.62, p = 0.0004). Reproduced and modified from (134) with permission. (B) Example of a PET-CT scan of a sarcoidosis patient with pulmonary involvement, before (i) and after (ii) 6 months of infliximab therapy.

References

    1. Statement on Sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) Adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med. (1999) 160:736–55. 10.1164/ajrccm.160.2.ats4-99 - DOI - PubMed
    1. Tarasidis A, Arce S. Immune response biomarkers as indicators of sarcoidosis presence, prognosis, and possible treatment: an Immunopathogenic perspective. Autoimmun Rev. (2020) 19:102462. 10.1016/j.autrev.2020.102462 - DOI - PubMed
    1. Broos CE, Koth LL, Van Nimwegen M, In'T Veen JCCM, Paulissen SMJ, Van Hamburg JP, et al. . Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur Respir J. (2018) 51:1701124. 10.1183/13993003.01124-2017 - DOI - PubMed
    1. Zhou T, Casanova N, Pouladi N, Wang T, Lussier Y, Knox KS, et al. . Identification of Jak-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature. Sci Rep. (2017) 7:4237. 10.1038/s41598-017-04109-6 - DOI - PMC - PubMed
    1. Reich JM. Mortality of intrathoracic sarcoidosis in referral vs population-based settings: Influence of stage, ethnicity, and corticosteroid therapy. Chest. (2002) 121:32–9. 10.1378/chest.121.1.32 - DOI - PubMed