Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 5;11(8):897.
doi: 10.3390/genes11080897.

Vitamin D Pathway Genetic Variation and Type 1 Diabetes: A Case-Control Association Study

Affiliations

Vitamin D Pathway Genetic Variation and Type 1 Diabetes: A Case-Control Association Study

Joana T Almeida et al. Genes (Basel). .

Abstract

Vitamin D has immunomodulatory effects, and its deficiency has been implicated in the autoimmune process of type 1 diabetes. Serum vitamin D levels are influenced by variants in genes involved in the synthesis, transport, hydroxylation and degradation of vitamin D. The aim of this study was to assess if single nucleotide polymorphisms (SNPs) at the DHCR7 (rs12785878), GC (rs2282679), CYP2R1 (rs2060793) and CYP24A1 (rs6013897) loci are associated with type 1 diabetes in the Portuguese population. Genotype and allele frequencies were determined in 350 cases of type 1 diabetes and in 490 controls. The frequency of each SNP alone was not significantly different between patients and controls. However, the combined analysis of the four SNPs showed that minor alleles of these variants clustered more frequently in patients. The proportion of individuals with three or more minor alleles was significantly higher in patients than in controls (56.3% vs. 48.5; odds ratio (OR) 1.37; 95% confidence interval (CI) 1.04-1.81; p-value 0.027). These results suggest a cumulative effect of SNPs at the DHCR7, GC, CYP2R1 and CYP24A1 loci on the susceptibility to type 1 diabetes, due to the roles of these genes in the vitamin D metabolic pathway.

Keywords: SNP; Vitamin D; autoimmune; genetics; single nucleotide polymorphism; type 1 diabetes.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

    1. Pike J.W., Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. North. Am. 2017;46:815–843. doi: 10.1016/j.ecl.2017.07.001. - DOI - PMC - PubMed
    1. American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43:S14–S31. doi: 10.2337/dc20-S002. - DOI - PubMed
    1. Infante M., Ricordi C., Sanchez J., Clare-Salzler M.J., Padilla N., Fuenmayor V., Chavez C., Alvarez A., Baidal D., Alejandro R., et al. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients. 2019;11:2185. doi: 10.3390/nu11092185. - DOI - PMC - PubMed
    1. Rak K., Bronkowska M. Immunomodulatory Effect of Vitamin D and Its Potential Role in the Prevention and Treatment of Type 1 Diabetes Mellitus-A Narrative Review. Molecules. 2018;24:53. doi: 10.3390/molecules24010053. - DOI - PMC - PubMed
    1. Giulietti A., Gysemans C., Stoffels K., van Etten E., Decallonne B., Overbergh L., Bouillon R., Mathieu C. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia. 2004;47:451–462. doi: 10.1007/s00125-004-1329-3. - DOI - PubMed

Publication types