Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep;31(3):273-287.
doi: 10.1007/s00399-020-00710-x. Epub 2020 Aug 7.

Over- and undersensing-pitfalls of arrhythmia detection with implantable devices and wearables

Affiliations
Review

Over- and undersensing-pitfalls of arrhythmia detection with implantable devices and wearables

Johannes Sperzel et al. Herzschrittmacherther Elektrophysiol. 2020 Sep.

Abstract

Cardiac implantable electronic devices (CIEDs) are a cornerstone of arrhythmia and heart failure detection as well as management. In recent years new kinds of devices have emerged which can be used subcutaneously or worn on the skin. In particular for large-scale arrhythmia monitoring, small, unobtrusive gadgets seem positioned to upend paradigms and care delivery. However, the performance of CIEDs and wearables is only as good as their sensing and detection capacities. Whether for pacing, defibrillation or diagnostic monitoring, the device must be able to process and filter the sensed signal to reduce noise and to exclude irrelevant physiological signals. The demands on sensing and detection quality will differ depending on how the information is applied. With a pacemaker or implantable cardioverter/defibrillator, withheld or erroneous therapy can have severe consequences and accurate and reliable detection of cardiac function is crucial. Monitoring devices are usually used in risk assessment and management, with greater tolerance for isolated artefacts or lower quality of readings. This review discusses sensing and detection and the performance to date by CIEDs as well as subcutaneous and wearable devices.

Kardiale implantierbare elektronische Systeme (CIED) stellen Eckpfeiler in der Diagnostik und Therapie von Herzrhythmusstörungen und Herzinsuffizienz dar. In den letzten Jahren wurden neue Geräte entwickelt, die subkutan implantiert oder als sogenannte Wearables getragen werden können. Insbesondere im permanenten Arrhythmiemonitoring scheinen kleine, unauffällige Geräte das Potenzial zu haben, Paradigmen umzustoßen und die Versorgung zu verändern. Die Leistung von CIED und Wearables ist jedoch nur so gut wie deren Wahrnehmungs- und Detektionseigenschaften. Unabhängig von der Nutzung als Herzschrittmacher, Defibrillator oder Monitoring-Device muss durch spezielle Filter und Algorithmen sichergestellt werden, dass das wahrgenommene intrinsische Signal von Störsignalen oder irrelevanten physiologischen Signalen differenziert werden kann. Die Anforderungen an die Wahrnehmungs- und Detektionsqualität sind davon abhängig, wie die Informationen genutzt werden. Eine durch Oversensing oder Undersensing zurückgehaltene oder falsche Therapie bei Patienten mit Herzschrittmacher oder implantierbarem Kardioverter/Defibrillator kann zu schweren Komplikationen führen, weshalb eine genaue und verlässliche Detektion der Herzfunktion hier kritisch ist. Systeme zum alleinigen Monitoring finden vor allem in der Risikoabschätzung und Therapieoptimierung Verwendung, wobei vereinzelte Artefakte oder eine geringere Messqualität hier tolerabler sind. Die vorliegende Übersicht beschreibt die Wahrnehmungs- und Detektionsfunktion sowie die resultierende Qualität der verfügbaren CIED, subkutanen Systeme und Wearables.

Keywords: Arrhythmia detection; Defibrillator; Over- and undersensing; Pacemaker; Wearables.

PubMed Disclaimer

Conflict of interest statement

J. Sperzel received speaker fees and institutional research grants from Abbott, Biotronik, Boston Scientific, Impulse Dynamics, Microport and Zoll. C.W. Hamm and A. Hain declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a Schematic illustration of an electrogram with sensing threshold and sensed R wave. b Example of overly high sensing threshold and resulting undersensing of a true R wave. c Example of overly low sensing threshold and resulting oversensing of noise. All images in Figs. 1 and 2 are from Morschhäuser et al. [42] and reproduced with kind permission from the publisher
Fig. 2
Fig. 2
Band pass filters for pacemakers. VES Ventricular Extrasystole
Fig. 3
Fig. 3
Automatic mode switch during atrial fibrillation
Fig. 4
Fig. 4
Incorrect detection of ventricular fibrillation due to noise
Fig. 5
Fig. 5
a True bipolar sensing; b Integrated bipolar sensing. RV right ventricular
Fig. 6
Fig. 6
a Myopotential signals (~0.8 mV) are oversensed with the low frequency attenuation on. b Signals (~0.27 mV) are still present but not oversensed. V ventricular, LV left ventricular
Fig. 7
Fig. 7
a Right ventricular (RV) sensing with the low frequency attenuation (LFA) filter off in a patient with a replaced ICD system. b RV sensing with LFA Filter on
Fig. 8
Fig. 8
Example of subcutaneous implantable cardioverter/defibrillator electrogram
Fig. 9
Fig. 9
a Example of atrial fibrillation on insertable cardiac monitor electrogram. b Incorrect detection due to undersensing. VEGM ventricular electrogram using a can to header vector
Fig. 10
Fig. 10
Wearable defibrillator electrograms showing a ventricular tachycardia and b atrial fibrillation
Fig. 11
Fig. 11
The pulsatile (AC) component of the photoplethysmography signal and corresponding electrocardiogram. In actual use, the AC component is superimposed on the much larger quasi-DC component. PTTf beat-to-beat pulse transit time to the foot of the pulse, PTTp pulse transit time to the peak of the pulse. The pulse landmarks can be used to calculate the normalised pulse contour. From Allen [3], used with permission
Fig. 12
Fig. 12
Apple watch tracings showing a extrasystole and b atrial fibrillation

References

    1. Alasti M, Machado C, Kotschet E, Alison J. Inappropriate shock due to myopotential oversensing in a patient with subcutaneous implantable cardioverter-defibrillator. Heart Lung Circ. 2019;28:e88–e90. doi: 10.1016/j.hlc.2018.08.030. - DOI - PubMed
    1. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. J Am Coll Cardiol. 2018;72:e91–e220. doi: 10.1016/j.jacc.2017.10.054. - DOI - PubMed
    1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28:R1–R39. doi: 10.1088/0967-3334/28/3/R01. - DOI - PubMed
    1. Auricchio A, Schloss EJ, Kurita T, et al. Low inappropriate shock rates in patients with single- and dual/triple-chamber implantable cardioverter-defibrillators using a novel suite of detection algorithms: PainFree SST trial primary results. Heart Rhythm. 2015;12:926–936. doi: 10.1016/j.hrthm.2015.01.017. - DOI - PubMed
    1. Bagchi C (2020) Telehealth in the era of COVID-19. https://www.eiu.com/n/telehealth-in-the-era-of-covid-19/. Accessed 10 June 2020