Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;21(1):150-159.
doi: 10.1016/j.spinee.2020.07.016. Epub 2020 Aug 5.

Biomechanical effects of laminectomies in the human lumbar spine: a finite element study

Affiliations

Biomechanical effects of laminectomies in the human lumbar spine: a finite element study

Nicholas T Spina et al. Spine J. 2021 Jan.

Abstract

Background context: Previous studies have analyzed the effect of laminectomy on intervertebral disc (IVD), facet-joint-forces (FJF), and range of motion (ROM), while only two have specifically reported stresses at the pars interarticularis (PI) with posterior element resection. These studies have been performed utilizing a single subject, questioning their applications to a broader population.

Purpose: We investigate the effect of graded PI resection in a three-dimensional manner on PI stress to provide surgical guidelines for avoidance of iatrogenic instability following lumbar laminectomy. Additionally, quantified FJF and IVD stresses can provide further insight into the development of adjacent segment disease.

Study design: Biomechanical finite element (FE) method investigation of the lumbar spine.

Methods: FE models of the lumbar spine of three subjects were created using the open-source finite element software, FEBio. Single-level laminectomy, two-level laminectomy, and ventral-to-dorsal PI resection simulations were performed with varying degrees of PI resection from 0% to 75% of the native PI. These models were taken through cardinal ROM under standard loading conditions and PI stresses, FJF, IVD stresses, and ROM were analyzed.

Results: The three types of laminectomy simulated in this study showed a nonlinear increase in PI stress with increased bone resection. Axial rotation generated the most stress at the PI followed by flexion, extension and lateral bending. At 75% bone resection all three types of laminectomy produced PI stresses that were near the ultimate strength of human cortical bone during axial rotation. FJF decreased with increased bone resection for the three laminectomies simulated. This was most notable in axial rotation followed by extension and lateral bending. IVD stresses varied greatly between the nonsurgical models and likewise the effect of laminectomy on IVD stresses varied between subjects. ROM was mostly unaffected by the laminectomies performed in this study.

Conclusions: Regarding the risk of iatrogenic spondylolisthesis, the combined results are sufficient evidence to suggest surgeons should be particularly cautious when PI resection exceeds 50% bone resection for all laminectomies included in this study. Lastly, the effects seen in FJF and IVD stresses indicate the degree to which the remainder of the spine must experience compensatory biomechanical changes as a result of the surgical intervention.

Keywords: FEBio; Facet joint force; Finite element analysis; Iatrogenic spondylolisthesis; Intervertebral disc; Laminectomy; Lumbar spine; Pars interarticularis; Spinal decompression surgery; Stress.

PubMed Disclaimer

Publication types

LinkOut - more resources