Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;14(12):3038-3053.
doi: 10.1038/s41396-020-00735-7. Epub 2020 Aug 7.

Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

Affiliations

Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

Joana Séneca et al. ISME J. 2020 Dec.

Abstract

Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO2, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO2 and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH4+ availability. Both, AOA and comammox Nitrospira decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO2 have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1. qPCR quantifications of amoA gene and transcript copy numbers per gram of dry soil from the ammonia-oxidizing microbial groups.
a Quantifications from plots affected by elevated temperature (eT) and atmospheric CO2 concentrations (eCO2). The dashed lines represent plots affected by elevated atmospheric CO2 conditions (eCO2). The colors represent plots affected by either ambient temperature (aT) or elevated temperature (eT). b Quantifications from plots affected by future climate (eT x eCO2) and drought (D). The dashed lines separate plots affected by drought (D). The colors represent the drought treatment. The caption on the upper right corner of each subplot represents the ANOVA results. *p value <0.05; **p value <0.01. Whenever the ANOVA results showed a significant interaction term, lsmeans multiple comparison tests were ran. For details on the ANOVA and post-hoc tests, see Tables S2 and S3.
Fig. 2
Fig. 2. Shannon diversity index based on amoA/nxrB gene and transcript sequences from all microbial groups.
a Quantifications from plots affected by elevated temperature (eT) and atmospheric CO2 concentrations (eCO2). The dashed lines represent plots affected by elevated atmospheric CO2 conditions (eCO2). The colors represent plots affected by either ambient temperature (aT) or elevated temperature (eT). b Quantifications from plots affected by future climate (eT x eCO2) and drought (D). The dashed lines separate plots affected by drought (D). The colors represent the drought treatment. The caption on the upper right corner of each subplot represents the ANOVA results. *p value <0.05; **p value <0.01. Whenever the ANOVA results showed a significant interaction term, lsmeans multiple comparison tests were ran. For details on the ANOVA and post-hoc tests, see Tables S2 and S3.
Fig. 3
Fig. 3. Relative abundance (%) of all nitrifying groups obtained by amoA and nxrB transcript sequences.
a Data for plots affected by single and interactive effects of elevated temperature (eT) and atmospheric CO2 (eCO2) concentrations. b Plots affected by single and interactive effects of future climate conditions (eT x eCO2) and drought (D). The color code represents different genera/OTU/clades/lineages. “Amb” stands for “ambient conditions”. Multiple horizontal lines within the same color represent individual OTUs within a group. Taxa that comprised <0.1% of all reads per treatment are grouped as “Other”.

Similar articles

Cited by

References

    1. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4. - PubMed
    1. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, et al. A safe operating space for humanity. Nature. 2009;461:472–5. - PubMed
    1. Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:1–10. - PMC - PubMed
    1. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86. - PMC - PubMed
    1. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, et al. Impacts of 1.5 °C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, et al., editors. Geneva, Switzerland: World Meteorological Organization Technical Document; 2018.

Publication types