Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Aug 8;22(1):185.
doi: 10.1186/s13075-020-02276-y.

Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with systemic lupus erythematosus in Thai population

Affiliations
Meta-Analysis

Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with systemic lupus erythematosus in Thai population

Pattarin Tangtanatakul et al. Arthritis Res Ther. .

Abstract

Background: Differences in the expression of variants across ethnic groups in the systemic lupus erythematosus (SLE) patients have been well documented. However, the genetic architecture in the Thai population has not been thoroughly examined. In this study, we carried out genome-wide association study (GWAS) in the Thai population.

Methods: Two GWAS cohorts were independently collected and genotyped: discovery dataset (487 SLE cases and 1606 healthy controls) and replication dataset (405 SLE cases and 1590 unrelated disease controls). Data were imputed to the density of the 1000 Genomes Project Phase 3. Association studies were performed based on different genetic models, and pathway enrichment analysis was further examined. In addition, the performance of disease risk estimation for individuals in Thai GWAS was assessed based on the polygenic risk score (PRS) model trained by other Asian populations.

Results: Previous findings on SLE susceptible alleles were well replicated in the two GWAS. The SNPs on HLA class II (rs9270970, A>G, OR = 1.82, p value = 3.61E-26), STAT4 (rs7582694, C>G, OR = 1.57, p value = 8.21E-16), GTF2I (rs73366469, A>G, OR = 1.73, p value = 2.42E-11), and FAM167A-BLK allele (rs13277113, A>G, OR = 0.68, p value = 1.58E-09) were significantly associated with SLE in Thai population. Meta-analysis of the two GWAS identified a novel locus at the FBN2 that was specifically associated with SLE in the Thai population (rs74989671, A>G, OR = 1.54, p value = 1.61E-08). Functional analysis showed that rs74989671 resided in a peak of H3K36me3 derived from CD14+ monocytes and H3K4me1 from T lymphocytes. In addition, we showed that the PRS model trained from the Chinese population could be applied in individuals of Thai ancestry, with the area under the receiver-operator curve (AUC) achieving 0.76 for this predictor.

Conclusions: We demonstrated the genetic architecture of SLE in the Thai population and identified a novel locus associated with SLE. Also, our study suggested a potential use of the PRS model from the Chinese population to estimate the disease risk for individuals of Thai ancestry.

Keywords: Genetic susceptibility; Genome-wide association study; Polygenic risk score; Single nucleotide polymorphisms; Systemic lupus erythematosus; Thai population.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Quality control and dataset preparation flow diagram of both discovery and validation datasets. The flow diagram was modified from the PRISMA flow diagram [15] (a). Manhattan plot on the meta-analysis result of the two SLE GWAS datasets in the Thai population using R-Bioconductor package qqman (b)
Fig. 2
Fig. 2
Regional plot of novel SLE susceptible variants on FBN2 locus with their relative variants around FBN2 locus (a). Haplotype block of significant variants on FBN2 locus with their correlation to show linkage disequilibrium between SNPs (b). The picture illustrated histone markers overlapped with FBN2 SNP site (c)
Fig. 3
Fig. 3
Diagram plot showed enrichment pathway from functional annotation analysis of significant variants (p value < 5E−05) using SNPnexus
Fig. 4
Fig. 4
The graph shows the polygenic risk score calculation and the mean difference between SLE and healthy controls (a). The circular plot showed loci which identified in this study at individual chromosomes using package Rcircos [33] (b)

Similar articles

Cited by

References

    1. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358(9):929–939. - PubMed
    1. Ceccarelli F, Perricone C, Borgiani P, Ciccacci C, Rufini S, Cipriano E, Alessandri C, Spinelli FR, Sili Scavalli A, Novelli G, et al. Genetic factors in systemic lupus erythematosus: contribution to disease phenotype. J Immunol Res. 2015;2015:745647. - PMC - PubMed
    1. Goulielmos GN, Zervou MI, Vazgiourakis VM, Ghodke-Puranik Y, Garyfallos A, Niewold TB. The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene. 2018;668:59–72. - PubMed
    1. Kwon YC, Chun S, Kim K, Mak A. Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond. Cells. 2019;8(10):1180–96. - PMC - PubMed
    1. Julia A, Lopez-Longo FJ, Perez Venegas JJ, Bonas-Guarch S, Olive A, Andreu JL, Aguirre-Zamorano MA, Vela P, Nolla JM, de la Fuente JLM, et al. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):100. - PMC - PubMed

Publication types