Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug 8;11(1):345.
doi: 10.1186/s13287-020-01855-9.

Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress

Affiliations
Review

Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress

Xiaomo Wu et al. Stem Cell Res Ther. .

Abstract

Mesenchymal stromal cells (MSCs) are a subset of heterogeneous non-hematopoietic fibroblast-like cells that can differentiate into cells of multiple lineages, such as chondrocytes, osteoblasts, adipocytes, myoblasts, and others. These multipotent MSCs can be found in nearly all tissues but mostly located in perivascular niches, playing a significant role in tissue repair and regeneration. Additionally, MSCs interact with immune cells both in innate and adaptive immune systems, modulating immune responses and enabling immunosuppression and tolerance induction. Understanding the biology of MSCs and their roles in clinical treatment is crucial for developing MSC-based cellular therapy for a variety of pathological conditions. Here, we review the progress in the study on the mechanisms underlying the immunomodulatory and regenerative effects of MSCs; update the medical translation of MSCs, focusing on the registration trials leading to regulatory approvals; and discuss how to improve therapeutic efficacy and safety of MSC applications for future.

Keywords: Cellular therapy; Immunomodulatory activity; MSCs; Paracrine effects.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Timeline for major events in studies of the immunosuppressive effects of MSCs and the progress in clinical applications
Fig. 2
Fig. 2
Mechanisms mediating immunomodulation. MSCs exert their effect on innate and adaptive immune systems via cell-to-cell interactions and immunomodulatory/regenerative factors. Depleting any one of these molecules would not induce a complete loss of its involved regulatory activities of MSCs and their relative contribution to the therapeutic effects varies between different studies. MSC-mediated immunomodulation and regenerative action is a redundant system, and none of these molecules has an exclusive role
Fig. 3
Fig. 3
Overview of the molecular mechanisms facilitating each step of MSCs homing

References

    1. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–650. - PubMed
    1. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–274. - PubMed
    1. Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381–390. - PubMed
    1. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–340. - PubMed
    1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403. - PubMed

Publication types

LinkOut - more resources