Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2020 Oct;34(10):2751-2759.
doi: 10.1519/JSC.0000000000003770.

Influence of Resisted Sled-Pull Training on the Sprint Force-Velocity Profile of Male High-School Athletes

Affiliations
Randomized Controlled Trial

Influence of Resisted Sled-Pull Training on the Sprint Force-Velocity Profile of Male High-School Athletes

Micheál J Cahill et al. J Strength Cond Res. 2020 Oct.

Abstract

Cahill, MJ, Oliver, JL, Cronin, JB, Clark, K, Cross, MR, Lloyd, RS, and Lee, JE. Influence of resisted sled-pull training on the sprint force-velocity profile of male high-school athletes. J Strength Cond Res 34(10): 2751-2759, 2020-Although resisted sled towing is a commonly used method of sprint-specific training, little uniformity exists around training guidelines for practitioners. The aim of this study was to assess the effectiveness of unresisted and resisted sled-pull training across multiple loads. Fifty-three male high-school athletes were assigned to an unresisted (n = 12) or 1 of 3 resisted groups: light (n = 15), moderate (n = 14), and heavy (n = 12) corresponding to loads of 44 ± 4 %BM, 89 ± 8 %BM, and 133 ± 12 %BM that caused a 25, 50, and 75% velocity decrement in maximum sprint speed, respectively. All subjects performed 2 sled-pull training sessions twice weekly for 8 weeks. Split times of 5, 10, and 20 m improved across all resisted groups (d = 0.40-1.04, p < 0.01) but did not improve with unresisted sprinting. However, the magnitude of the gains increased most within the heavy group, with the greatest improvement observed over the first 10 m (d ≥ 1.04). Changes in preintervention to postintervention force-velocity profiles were specific to the loading prescribed during training. Specifically, F0 increased most in moderate to heavy groups (d = 1.08-1.19); Vmax significantly decreased in the heavy group but increased in the unresisted group (d = 012-0.44); whereas, Pmax increased across all resisted groups (d = 0.39-1.03). The results of this study suggest that the greatest gains in short distance sprint performance, especially initial acceleration, are achieved using much heavier sled loads than previously studied in young athletes.

PubMed Disclaimer

References

    1. Alcaraz PE, Palao JM, Elvira JL. Determining the optimal load for resisted sprint training with sled towing. J Strength Cond Res 23: 480–485, 2009.
    1. Bachero-Mena B, González-Badillo JJ. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J Strength Cond Res 28: 2954–2960, 2014.
    1. Cahill M, Cronin JB, Oliver JL, et al. Sled pushing and pulling to enhance speed capability. Strength Cond J 41: 94–104, 2019.
    1. Cahill MJ, Oliver JL, Cronin JB, et al. Influence of resisted sled-push training on the sprint force-velocity profile of male high school athletes. Scand J Med Sci Sports 30: 442–449, 2020.
    1. Cahill MJ, Oliver JL, Cronin JB, et al. Sled-pull load–velocity profiling and implications for sprint training prescription in young male athletes. Sports 7: 119, 2019.

Publication types

LinkOut - more resources