Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 14;26(26):3780-3791.
doi: 10.3748/wjg.v26.i26.3780.

Non-invasive prediction of persistent villous atrophy in celiac disease

Affiliations

Non-invasive prediction of persistent villous atrophy in celiac disease

Barbora Packova et al. World J Gastroenterol. .

Abstract

Background: Celiac disease (CD) is an immune-mediated enteropathy that is primarily treated with a gluten-free diet (GFD). Mucosal healing is the main target of the therapy. Currently, duodenal biopsy is the only way to evaluate mucosal healing, and non-invasive markers are challenging. Persistent elevation of anti-tissue transglutaminase antibodies (aTTG) is not an ideal predictor of persistent villous atrophy (VA). Data regarding prediction of atrophy using anti-deamidated gliadin peptide antibodies (aDGP) and abdominal ultrasonography are lacking.

Aim: To evaluate the ability of aTTG, aDGP, small bowel ultrasonography, and clinical and laboratory parameters in predicting persistent VA determined using histology.

Methods: Patients with CD at least 1 year on a GFD and available follow-up duodenal biopsy, levels of aTTG and aDGP, and underwent small bowel ultrasonography were included in this retrospective cohort study. We evaluated the sensitivity, specificity, and positive and negative predictive values of aTTG, aDGP, small bowel ultrasonography, laboratory and clinical parameters to predict persistent VA. A receiver operating characteristic (ROC) curve analysis of antibody levels was used to calculate cut off values with the highest accuracy for atrophy prediction.

Results: Complete data were available for 82 patients who were followed up over a period of four years (2014-2018). Among patients included in the analysis, women (67, 81.7%) were predominant and the mean age at diagnosis was 33.8 years. Follow-up biopsy revealed persistent VA in 19 patients (23.2%). The sensitivity and specificity of aTTG using the manufacturer's diagnostic cutoff value to predict atrophy was 50% and 85.7%, respectively, while the sensitivity and specificity of aDGP (using the diagnostic cutoff value) was 77.8% and 75%, respectively. Calculation of an optimal cutoff value using ROC analysis (13.4 U/mL for aTTG IgA and 22.6 U/mL for aDGP IgA) increased the accuracy and reached 72.2% [95% confidence interval (CI): 46.5-90.3] sensitivity and 90% (95%CI: 79.5-96.2) specificity for aDGP IgA and 66.7% (95%CI: 41.0-86.7) sensitivity and 93.7% (95%CI: 84.5-98.2) specificity for aTTG IgA. The sensitivity and specificity of small bowel ultrasonography was 64.7% and 73.5%, respectively. A combination of serology with ultrasound imaging to predict persistent atrophy increased the positive predictive value and specificity to 88.9% and 98% for aTTG IgA and to 90.0% and 97.8% for aDGP IgA. Laboratory and clinical parameters had poor predictive values.

Conclusion: The sensitivity, specificity, and negative predictive value of aTTG and aDGP for predicting persistent VA improved by calculating the best cutoff values. The combination of serology and experienced bowel ultrasound examination may achieve better accuracy for the detection of atrophy.

Keywords: Abdominal ultrasound; Anti-deamidated gliadin peptide antibodies; Anti-tissue transglutaminase antibodies; Celiac disease; Gluten-free diet; Villous atrophy.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors do not have any conflict of interest.

Similar articles

Cited by

References

    1. Lebwohl B, Granath F, Ekbom A, Montgomery SM, Murray JA, Rubio-Tapia A, Green PH, Ludvigsson JF. Mucosal healing and mortality in coeliac disease. Aliment Pharmacol Ther. 2013;37:332–339. - PMC - PubMed
    1. Sharkey LM, Corbett G, Currie E, Lee J, Sweeney N, Woodward JM. Optimising delivery of care in coeliac disease - comparison of the benefits of repeat biopsy and serological follow-up. Aliment Pharmacol Ther. 2013;38:1278–1291. - PubMed
    1. Hære P, Høie O, Schulz T, Schönhardt I, Raki M, Lundin KE. Long-term mucosal recovery and healing in celiac disease is the rule - not the exception. Scand J Gastroenterol. 2016;51:1439–1446. - PubMed
    1. Leonard MM, Weir DC, DeGroote M, Mitchell PD, Singh P, Silvester JA, Leichtner AM, Fasano A. Value of IgA tTG in Predicting Mucosal Recovery in Children With Celiac Disease on a Gluten-Free Diet. J Pediatr Gastroenterol Nutr. 2017;64:286–291. - PMC - PubMed
    1. Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for Serum Transglutaminase and Endomysial Antibodies Do Not Detect Most Patients With Celiac Disease and Persistent Villous Atrophy on Gluten-free Diets: a Meta-analysis. Gastroenterology. 2017;153:689–701.e1. - PMC - PubMed