Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer
- PMID: 32774994
- PMCID: PMC7407356
Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer
Abstract
Pancreatic cancer (PC) is a fatal disease with high malignancy and difficult for early diagnosis. PC causes more than 400,000 patient deaths world widely and becomes the severe health problems. The tumor microenvironment (TME) is comprised of acellular stroma, pancreatic stellate cells, immune cells, and soluble factors. TME is maintained by continuous cell-matrix and cell-cell interactions. TME induced by the interaction among pancreatic cancer cells, epithelial cells and stromal cells is essential for the progression of PC and leads to resistance to chemotherapy. Components in the microenvironment can also promote the formation of connective tissue in the primary or metastatic site, or promote the metastatic ability of PC by enhancing angiogenesis, epithelial-mesenchymal transformation, and lymph angiogenesis. In addition, the TME also leaves pancreatic cancer unsusceptible to different immunotherapeutic strategies. In this review, we summarized the current knowledge about TME in PC. And the focus was placed on the role of TME in chemotherapeutic resistance and metastasis in the field of PC. And we also paid attention to the immunological therapy targeting the TME, aiming to provide the novel therapy for pancreatic cancer.
Keywords: Pancreatic cancer; chemoresistance; immunotherapy; metastasis; tumor microenvironment.
AJCR Copyright © 2020.
Conflict of interest statement
None.
Figures
References
-
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. - PubMed
-
- Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–1806. - PMC - PubMed
-
- Binkley CE, Zhang L, Greenson JK, Giordano TJ, Kuick R, Misek D, Hanash S, Logsdon CD, Simeone DM. The molecular basis of pancreatic fibrosis: common stromal gene expression in chronic pancreatitis and pancreatic adenocarcinoma. Pancreas. 2004;29:254–263. - PubMed
-
- Ioannides CG, Whiteside TL. T cell recognition of human tumors: implications for molecular immunotherapy of cancer. Clin Immunol Immunopathol. 1993;66:91–106. - PubMed
-
- Roberts NJ, Norris AL, Petersen GM, Bondy ML, Brand R, Gallinger S, Kurtz RC, Olson SH, Rustgi AK, Schwartz AG, Stoffel E, Syngal S, Zogopoulos G, Ali SZ, Axilbund J, Chaffee KG, Chen YC, Cote ML, Childs EJ, Douville C, Goes FS, Herman JM, Iacobuzio-Donahue C, Kramer M, Makohon-Moore A, McCombie RW, McMahon KW, Niknafs N, Parla J, Pirooznia M, Potash JB, Rhim AD, Smith AL, Wang Y, Wolfgang CL, Wood LD, Zandi PP, Goggins M, Karchin R, Eshleman JR, Papadopoulos N, Kinzler KW, Vogelstein B, Hruban RH, Klein AP. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6:166–175. - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources