Axially Chiral Biphenyl Compound-Based Thermally Activated Delayed Fluorescent Materials for High-Performance Circularly Polarized Organic Light-Emitting Diodes
- PMID: 32775163
- PMCID: PMC7404162
- DOI: 10.1002/advs.202000804
Axially Chiral Biphenyl Compound-Based Thermally Activated Delayed Fluorescent Materials for High-Performance Circularly Polarized Organic Light-Emitting Diodes
Abstract
To boost intrinsic circularly polarized luminescence (CPL) properties of chiral emitters, an axially chiral biphenyl unit is inlaid in thermally activated delayed fluorescent (TADF) skeleton, urging the participation of chiral source in frontier molecular orbital distributions. A pair of enantiomers, (R)-BPPOACZ and (S)-BPPOACZ, containing the cyano as electron-withdrawing moieties and carbazole and phenoxazine as electron-donating units are synthesized and separated. The circularly polarized TADF enantiomers exhibit both high photoluminescence quantum yield of 86.10% and excellent CPL activities with maximum dissymmetry factor |g PL| values of almost 10-2 in solution and 1.8 × 10-2 in doped film, which are among the best values of previously reported small chiral organic materials. Moreover, the circularly polarized organic light-emitting diodes based on the TADF enantiomers achieve the maximum external quantum efficiency of 16.6% with extremely low efficiency roll-off. Obvious circularly polarized electroluminescence signals with |g EL| values of 4 × 10-3 are also recorded.
Keywords: axially chiral biphenyl compound; circularly polarized electroluminescence; circularly polarized luminescence; organic light‐emitting diodes; thermally activated delayed fluorescence.
© 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- a) Jager W. F., Lange B. D., Feringa B. L., Science 1996, 273, 1686;
- b) Kim D.‐Y., J. Korean Phys. Soc. 2006, 49, 505;
- c) Wagenknecht C., Li C.‐M., Reingruber A., Bao X.‐H., Goebel A., Chen Y.‐A., Zhang Q., Chen K., Pan J.‐W., Nat. Photonics 2010, 4, 549;
- d) Farshchi R., Ramsteiner M., Herfort J., Tahraoui A., Grahn H. T., Appl. Phys. Lett. 2011, 98, 162508;
- e) Carr R., Evans N. H., Parker D., Chem. Soc. Rev. 2012, 41, 7673; - PubMed
- f) Heffern M. C., Matosziuk L. M., Meade T. J., Chem. Rev. 2014, 114, 4496. - PMC - PubMed
-
- Imagawa T., Hirata S., Totani K., Watanabe T., Vacha M., Chem. Commun. 2015, 51, 13268. - PubMed
-
- Song F., Xu Z., Zhang Q., Zhao Z., Zhang H., Zhao W., Qiu Z., Qi C., Zhang H., Sung H. H. Y., Williams I. D., Lam J. W. Y., Zhao Z., Qin A., Ma D., Tang B. Z., Adv. Funct. Mater. 2018, 28, 1800051.
-
- a) Peeters E., Christiaans M., Janssen R., Schoo H., Dekkers H., Meijer E. W., J. Am. Chem. Soc. 1997, 119, 9909;
- b) Geng Y., Trajkovska A., Culligan S. W., Ou J. J., Chen H. M. P., Katsis D., Chen S. H., J. Am. Chem. Soc. 2003, 125, 14032; - PubMed
- c) Di Nuzzo D., Kulkarni C., Zhao B., Smolinsky E., Tassinari F., Meskers S. C. J., Naaman R., Meijer E. W., Friend R. H., ACS Nano 2017, 11, 12713; - PubMed
- d) Zhang X., Zhang Y., Zhang H., Quan Y., Li Y., Cheng Y., Ye S., Org. Lett. 2019, 21, 439; - PubMed
- e) Wan L., Wade J., Salerno F., Arteaga O., Laidlaw B., Wang X., Penfold T., Fuchter M. J., Campbell A. J., ACS Nano 2019, 13, 8099; - PubMed
- f) Oda M., Nothofer H.‐G., Lieser G., Scherf U., Meskers S. C. J., Neher D., Adv. Mater. 2000, 12, 362.
-
- a) Hasegawa Y., Yamamuro M., Wada Y., Kanehisa N., Kai Y., Yanagida S., J. Phys. Chem. A 2003, 107, 1697;
- b) Yuasa J., Ohno T., Miyata K., Tsumatori H., Hasegawa Y., Kawai T., J. Am. Chem. Soc. 2011, 133, 9892; - PubMed
- c) Zinna F., Giovanella U., Di Bari L., Adv. Mater. 2015, 27, 1791; - PubMed
- d) Zinna F., Pasini M., Galeotti F., Botta C., Di Bari L., Giovanella U., Adv. Funct. Mater. 2017, 27, 1603719.
LinkOut - more resources
Full Text Sources
Other Literature Sources