Variability and Standardization of Quantitative Imaging
- PMID: 32776768
- DOI: 10.1097/RLI.0000000000000667
Variability and Standardization of Quantitative Imaging
Comment on
-
Variability and Standardization of Quantitative Imaging: Monoparametric to Multiparametric Quantification, Radiomics, and Artificial Intelligence.Invest Radiol. 2020 Sep;55(9):601-616. doi: 10.1097/RLI.0000000000000666. Invest Radiol. 2020. PMID: 32209816 Free PMC article. Review.
Similar articles
-
Promoting Transparency and Standardization in Ophthalmologic Artificial Intelligence: A Call for Artificial Intelligence Model Card.Asia Pac J Ophthalmol (Phila). 2022 May 1;11(3):215-218. doi: 10.1097/APO.0000000000000469. Asia Pac J Ophthalmol (Phila). 2022. PMID: 35772083 No abstract available.
-
Although depth prediction of colorectal cancer with artificial intelligence is clinically relevant, standardization of histopathologic diagnosis should also be taken care of.Gastrointest Endosc. 2022 Jun;95(6):1195-1197. doi: 10.1016/j.gie.2022.02.008. Epub 2022 Mar 29. Gastrointest Endosc. 2022. PMID: 35365318 No abstract available.
-
Setting Standards: Establishing Expectations for Artificial Intelligence Applications through Standards Development.Biomed Instrum Technol. 2020 Sep 1;54(5):368-370. doi: 10.2345/0899-8205-54.5.368. Biomed Instrum Technol. 2020. PMID: 33049769 No abstract available.
-
Machine learning applications in proteomics research: how the past can boost the future.Proteomics. 2014 Mar;14(4-5):353-66. doi: 10.1002/pmic.201300289. Epub 2014 Jan 21. Proteomics. 2014. PMID: 24323524 Review.
-
Quantitative microscopy and artificial intelligence: some philosophical reflections.Anal Cell Pathol. 1989 Feb;1(1):1-10. Anal Cell Pathol. 1989. PMID: 2488697 Review.
Cited by
-
Stability of Radiomic Features across Different Region of Interest Sizes-A CT and MR Phantom Study.Tomography. 2021 Jun 8;7(2):238-252. doi: 10.3390/tomography7020022. Tomography. 2021. PMID: 34201012 Free PMC article.
-
Advancements in deep learning for early diagnosis of Alzheimer's disease using multimodal neuroimaging: challenges and future directions.Front Neuroinform. 2025 May 2;19:1557177. doi: 10.3389/fninf.2025.1557177. eCollection 2025. Front Neuroinform. 2025. PMID: 40385089 Free PMC article. Review.
-
The role of parametric feature maps to correct different volume of interest sizes: an in vivo liver MRI study.Eur Radiol Exp. 2023 Sep 6;7(1):48. doi: 10.1186/s41747-023-00362-9. Eur Radiol Exp. 2023. PMID: 37670193 Free PMC article.
References
-
- Abramson RG, Burton KR, Yu JP, et al. Methods and challenges in quantitative imaging biomarker development. Acad Radiol. 2015;22:25–32.
-
- Prescott JW. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making. J Digit Imaging. 2013;26:97–108.
-
- Hagiwara A, Fujita S, Ohno Y, et al. Variability and standardization of quantitative imaging: monoparametric to multiparametric quantification, radiomics, and artificial intelligence. Invest Radiol. 2020;55:601–616.
-
- Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310.
-
- Hagiwara A, Hori M, Cohen-Adad J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls. Invest Radiol. 2019;54:39–47.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources