Photoswitching Molecular Junctions: Platforms and Electrical Properties
- PMID: 32777151
- DOI: 10.1002/cphc.202000564
Photoswitching Molecular Junctions: Platforms and Electrical Properties
Abstract
Remarkable advances in technology have enabled the manipulation of individual molecules and the creation of molecular electronic devices utilizing single and ensemble molecules. Maturing the field of molecular electronics has led to the development of functional molecular devices, especially photoswitching or photochromic molecular junctions, which switch electronic properties under external light irradiation. This review introduces and summarizes the platforms for investigating the charge transport in single and ensemble photoswitching molecular junctions as well as the electronic properties of diverse photoswitching molecules such as diarylethene, azobenzene, dihydropyrene, and spiropyran. Furthermore, the article discusses the remaining challenges and the direction for moving forward in this area for future photoswitching molecular devices.
Keywords: ensemble molecule junctions; molecular junctions; photochromism; photoswitching; single molecule junctions.
© 2020 Wiley-VCH GmbH.
Similar articles
-
Charge transport characteristics of diarylethene photoswitching single-molecule junctions.Nano Lett. 2012 Jul 11;12(7):3736-42. doi: 10.1021/nl3015523. Epub 2012 Jun 28. Nano Lett. 2012. PMID: 22734823
-
High-Yield Functional Molecular Electronic Devices.ACS Nano. 2017 Jul 25;11(7):6511-6548. doi: 10.1021/acsnano.7b02967. Epub 2017 Jun 9. ACS Nano. 2017. PMID: 28578582
-
Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application.Acc Chem Res. 2019 Jan 15;52(1):151-160. doi: 10.1021/acs.accounts.8b00429. Epub 2018 Nov 30. Acc Chem Res. 2019. PMID: 30500161
-
Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties.Adv Sci (Weinh). 2022 Oct;9(30):e2202399. doi: 10.1002/advs.202202399. Epub 2022 Aug 17. Adv Sci (Weinh). 2022. PMID: 35975456 Free PMC article. Review.
-
Modulation and Control of Charge Transport Through Single-Molecule Junctions.Top Curr Chem (Cham). 2017 Feb;375(1):17. doi: 10.1007/s41061-017-0105-z. Epub 2017 Jan 24. Top Curr Chem (Cham). 2017. PMID: 28120303 Review.
Cited by
-
Effect of Bridging Manner on the Transport Behaviors of Dimethyldihydropyrene/Cyclophanediene Molecular Devices.Molecules. 2024 Jun 7;29(12):2726. doi: 10.3390/molecules29122726. Molecules. 2024. PMID: 38930792 Free PMC article.
-
Plasmonic phenomena in molecular junctions: principles and applications.Nat Rev Chem. 2022 Oct;6(10):681-704. doi: 10.1038/s41570-022-00423-4. Epub 2022 Sep 20. Nat Rev Chem. 2022. PMID: 37117494 Review.
-
Salicylideneaniline/Dithienylethene Hybrid Molecular Switches: Design, Synthesis, and Photochromism.J Org Chem. 2024 Jan 5;89(1):16-26. doi: 10.1021/acs.joc.3c00828. Epub 2023 Dec 7. J Org Chem. 2024. PMID: 38060251 Free PMC article.
-
Light-Driven Charge Transport and Optical Sensing in Molecular Junctions.Nanomaterials (Basel). 2022 Feb 19;12(4):698. doi: 10.3390/nano12040698. Nanomaterials (Basel). 2022. PMID: 35215024 Free PMC article. Review.
-
Expanding the Molecular Switches Toolbox: Photoreloadable Dithienylethene Mechanophores.Angew Chem Int Ed Engl. 2025 Apr 17;64(17):e202422549. doi: 10.1002/anie.202422549. Epub 2025 Feb 21. Angew Chem Int Ed Engl. 2025. PMID: 39931751 Free PMC article.
References
-
- J. C. Cuevas, E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, WORLD SCIENTIFIC, 2010.
-
- M. A. Reed, Science 1997, 278, 252-254.
-
- N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M. A. Ratner, A. Nitzan, J. F. Stoddart, X. Guo, Nat. Rev. Phys. 2019, 1, 211-230.
-
- H. Song, M. A. Reed, T. Lee, Adv. Mater. 2011, 23, 1583-1608.
-
- N. J. Tao, Nat. Nanotechnol. 2006, 1, 173-181.
Publication types
LinkOut - more resources
Full Text Sources