Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 10;21(1):201.
doi: 10.1186/s13059-020-02112-1.

A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex

Affiliations

A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex

Susanna Sabin et al. Genome Biol. .

Abstract

Background: Although tuberculosis accounts for the highest mortality from a bacterial infection on a global scale, questions persist regarding its origin. One hypothesis based on modern Mycobacterium tuberculosis complex (MTBC) genomes suggests their most recent common ancestor followed human migrations out of Africa approximately 70,000 years before present. However, studies using ancient genomes as calibration points have yielded much younger dates of less than 6000 years. Here, we aim to address this discrepancy through the analysis of the highest-coverage and highest-quality ancient MTBC genome available to date, reconstructed from a calcified lung nodule of Bishop Peder Winstrup of Lund (b. 1605-d. 1679).

Results: A metagenomic approach for taxonomic classification of whole DNA content permitted the identification of abundant DNA belonging to the human host and the MTBC, with few non-TB bacterial taxa comprising the background. Genomic enrichment enabled the reconstruction of a 141-fold coverage M. tuberculosis genome. In utilizing this high-quality, high-coverage seventeenth-century genome as a calibration point for dating the MTBC, we employed multiple Bayesian tree models, including birth-death models, which allowed us to model pathogen population dynamics and data sampling strategies more realistically than those based on the coalescent.

Conclusions: The results of our metagenomic analysis demonstrate the unique preservation environment calcified nodules provide for DNA. Importantly, we estimate a most recent common ancestor date for the MTBC of between 2190 and 4501 before present and for Lineage 4 of between 929 and 2084 before present using multiple models, confirming a Neolithic emergence for the MTBC.

Keywords: Ancient DNA; Metagenomics; Molecular dating; Mycobacterium tuberculosis; Tuberculosis.

PubMed Disclaimer

Conflict of interest statement

Not applicable.

Figures

Fig. 1
Fig. 1
CT image of Ranke complex. CT image of Peder Winstrup’s chest in a slightly angled axial plane with the short arrow showing a small calcified granuloma in the probable upper lobe of the collapsed right lung, and two approximately 5 mm calcifications in the right hilum together suggesting a Ranke complex and previous primary tuberculosis. The more lateral of the two hilar calcifications was extracted for further analysis. In addition, there are calcifications in the descending aorta proposing atherosclerosis (arrowhead)
Fig. 2
Fig. 2
Screening of sequencing data from LUND1 shows preservation of host and pathogen DNA. a Krona plots reflecting the metagenomic composition of the lung nodule. The majority of sequencing reads were aligned to Homo sapiens (n = 2,833,403), demonstrating extensive preservation of host DNA. A small portion of reads aligned to bacterial organisms, and 80% of these reads were assigned to the MTBC node (n = 1724). b Damage plots generated from sequencing reads mapped directly to a reconstructed MTBC ancestor genome [21], demonstrating a pattern characteristic of ancient DNA
Fig. 3
Fig. 3
MTBC maximum clade credibility tree. This MCC tree of mean heights was generated from the BDSKY+UCLD model as applied to the full MTBC dataset. Lineages are labeled on the right side. The ancient genomes are indicated by red asterisks and labeled on the side with their sample names. The outgroup is labeled as “M. canettii.” The 95% HPD intervals of the heights of nodes ancestral to each lineage are indicated as (lower boundary–upper boundary) in years before present. Ancestral nodes are highlighted by a circle colored to match the lineage label. The time scale is expressed as years before present, with the most recent time as 2010. The accompanying skyline plot can be found in Fig. S10 in Additional File 3
Fig. 4
Fig. 4
L4 maximum clade credibility tree. This MCC tree of mean heights was generated from the BDSKY+UCLD model as applied to the L4 dataset. Sublineages are labeled on the right side. The ancient genomes are indicated by red asterisks and labeled with their sample name. The Lineage 2 outgroup, represented by L2_N0020, is labeled on the side. The 95% HPD interval for node height is displayed for ancestral nodes of each sublineage as (lower boundary–upper boundary) in years before present. Ancestral nodes are highlighted by a circle colored to match the sublineage label. The time scale is expressed as years before present, with the most recent time as 2010. The accompanying skyline plot can be found in Fig. S13 in Additional File 3
Fig. 5
Fig. 5
Substitution rate comparison across models and studies. Mean substitution rate per site per year for all models is expressed by a filled circle, with extended lines indicating the 95% HPD interval for that parameter. The Bos et al. [5] and Kay et al. [6] ranges are based on the reported rate values in each study. The Bos et al. [5] range is based on a full MTBC dataset, while the Kay et al. [6] range is based on an L4 dataset. All values presented here fall within one order of magnitude

References

    1. WHO. WHO | Tuberculosis (TB). WHO. 2018 [cited 2018 Nov 18]. Available from: http://www.who.int/tb/en/.
    1. Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13(10):e1002152. - PMC - PubMed
    1. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1176–1182. - PMC - PubMed
    1. Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLOS Pathogens. 2013;9(8):e1003543. - PMC - PubMed
    1. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514(7523):494–497. - PMC - PubMed

Publication types

LinkOut - more resources