Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug 10;9(1):130.
doi: 10.1186/s13756-020-00770-1.

Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics

Affiliations
Review

Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics

Xuewei Zhou et al. Antimicrob Resist Infect Control. .

Abstract

Early in its evolution, Enterococcus faecium acquired traits that allowed it to become a successful nosocomial pathogen. E. faecium inherent tenacity to build resistance to antibiotics and environmental stressors that allows the species to thrive in hospital environments. The continual wide use of antibiotics in medicine has been an important driver in the evolution of E. faecium becoming a highly proficient hospital pathogen.For successful prevention and reduction of nosocomial infections with vancomycin resistant E. faecium (VREfm), it is essential to focus on reducing VREfm carriage and spread. The aim of this review is to incorporate microbiological insights of E. faecium into practical infection control recommendations, to reduce the spread of hospital-acquired VREfm (carriage and infections). The spread of VREfm can be controlled by intensified cleaning procedures, antibiotic stewardship, rapid screening of VREfm carriage focused on high-risk populations, and identification of transmission routes through accurate detection and typing methods in outbreak situations. Further, for successful management of E. faecium, continual innovation in the fields of diagnostics, treatment, and eradication is necessary.

Keywords: Diagnostics; Enterococcus faecium; Evolution; Infection control; VRE.

PubMed Disclaimer

Conflict of interest statement

John Rossen consults for IDbyDNA. All other authors declare no conflicts of interest. IDbyDNA did not have any influence on interpretation of reviewed data and conclusions drawn, nor on drafting of the manuscript and no support was obtained from them.

Figures

Fig. 1
Fig. 1
Change in E. faecium to E. faecalis ratio. Number of patients with blood cultures with E. faecium and E. faecalis in individual patients and the E. faecium/E. faecalis ratio during 1998–2017 in the University Medical Center Groningen. The E. faecium to E. faecalis ratio changed approximately from 0.1 in 1998 to 1.6 in 2017
Fig. 2
Fig. 2
Course of events in the epidemiology of AREfm and VREfm and the differences between the US and Europe from 1970 till 2010. In the United States (US) the increase of AREfm started around 1980 followed by an increase of VRE. In Europe, this event started 20 years later. Note the different situation between the US and Europe; in contrast to the US, Europe did have a large reservoir of VRE in the community in the 1990s, yet without suitable HA AREfm populations in hospitals to take up the van genes and become HA VREfm. This reservoir of VRE was linked to the avoparcin use in husbandry. In blue: Hospital Clade A1-VSEfm (AREfm). In red: hospital-Clade A1 VREfm. HGT: horizontal gene transfer (of van genes). Threshold: hypothetical critical number of hospital clade A1 AREfm strains needed for the introduction of van genes
Fig. 3
Fig. 3
Surveillance data for vancomycin resistant Enterococcus faecium in Europe. Data from the ECDC Surveillance Atlas- Antimicrobial resistance. Showing vancomycin resistance proportion rates in Enterococcus faecium in Europe for 2016. Dataset provided by ECDC based on data provided by World Health Organization (WHO) and Ministries of Health from the affected countries
Fig. 4
Fig. 4
vancomycin resistant Enterococcus faecium proportion rates in Eastern European countries from 2002 till 2016. Data from the ECDC Surveillance Atlas- Antimicrobial resistance. Showing the rapid increase in vancomycin resistance proportion rates in E. faecium for selected (Eastern) European countries: Romania, Latvia, Lithuania, Poland, Hungary, Slovakia, Croatia, Cyprus and Bulgaria. Dataset provided by ECDC based on data provided by WHO and Ministries of Health from the affected countries

References

    1. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990;3(1):46–65. - PMC - PubMed
    1. Schleifer, Kilpper-Balz Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus norn. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol Jan. 1984;34:31–34.
    1. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014;42(Database issue):D613–D616. - PMC - PubMed
    1. Gilmore MS, Lebreton F, van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol. 2013;16(1):10–16. - PMC - PubMed
    1. Top J, Willems R, Bonten M. Emergence of CC17 Enterococcus faecium: from commensal to hospital-adapted pathogen. FEMS Immunol Med Microbiol. 2008;52(3):297–308. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources