Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug 8;21(16):5695.
doi: 10.3390/ijms21165695.

Nutritional Indices for Assessing Fatty Acids: A Mini-Review

Affiliations
Review

Nutritional Indices for Assessing Fatty Acids: A Mini-Review

Jiapeng Chen et al. Int J Mol Sci. .

Abstract

Dietary fats are generally fatty acids that may play positive or negative roles in the prevention and treatment of diseases. In nature, fatty acids occur in the form of mixtures of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA), so their nutritional and/or medicinal values must be determined. Herein, we do not consider the classic indices, such as ∑SFA, ∑MUFA, ∑PUFA, ∑n-6 PUFA, ∑n-3 PUFA, and n-6 PUFA/n-3 PUFA; instead, we summarize and review the definitions, implications, and applications of indices used in recent years, including the PUFA/SFA, index of atherogenicity (IA), the index of thrombogenicity (IT), the hypocholesterolemic/hypercholesterolemic ratio (HH), the health-promoting index (HPI), the unsaturation index (UI), the sum of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA), fish lipid quality/flesh lipid quality (FLQ), the linoleic acid/α-linolenic acid (LA/ALA) ratio, and trans fatty acid (TFA). Of these nutritional indices, IA and IT are the most commonly used to assess the composition of fatty acids as they outline significant implications and provide clear evidence. EPA + DHA is commonly used to assess the nutritional quality of marine animal products. All indices have their advantages and disadvantages; hence, a rational choice of which to use is critical.

Keywords: fatty acids; human health; nutritional indices.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Rimm E.B., Appel L.J., Chiuve S.E., Djoussé L., Engler M.B., Kris-Etherton P.M., Mozaffarian D., Siscovick D.S., Lichtenstein A.H. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: A science advisory from the American Heart Association. Circulation. 2018;138:35–47. doi: 10.1161/CIR.0000000000000574. - DOI - PMC - PubMed
    1. Wu H., Xu L., Ballantyne C.M. Dietary and pharmacological fatty acids and cardiovascular health. J. Clin. Endocrinol. Metab. 2020;105:1030–1045. doi: 10.1210/clinem/dgz174. - DOI - PMC - PubMed
    1. Marangoni F., Agostoni C., Borghi C., Catapano A.L., Cena H., Ghiselli A., La Vecchia C., Lercker G., Manzato E., Pirillo A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis. 2020;292:90–98. doi: 10.1016/j.atherosclerosis.2019.11.018. - DOI - PubMed
    1. Naeini Z., Toupchian O., Vatannejad A., Sotoudeh G., Teimouri M., Ghorbani M., Nasli-Esfahani E., Koohdani F. Effects of DHA-enriched fish oil on gene expression levels of p53 and NF-κB and PPAR-γ activity in PBMCs of patients with T2DM: A randomized, double-blind, clinical trial. Nutr. Metab. Cardiovasc. 2020;30:441–447. doi: 10.1016/j.numecd.2019.10.012. - DOI - PubMed
    1. Bird J.K., Calder P.C., Eggersdorfer M. The role of n-3 long chain polyunsaturated fatty acids in cardiovascular disease prevention, and interactions with statins. Nutrients. 2018;10:775. doi: 10.3390/nu10060775. - DOI - PMC - PubMed