Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 1;54(17):10797-10807.
doi: 10.1021/acs.est.0c01097. Epub 2020 Aug 19.

Carbon-Negative Biofuel Production

Affiliations

Carbon-Negative Biofuel Production

Seungdo Kim et al. Environ Sci Technol. .

Abstract

Achievement of the 1.5 °C limit for global temperature increase relies on the large-scale deployment of carbon dioxide removal (CDR) technologies. In this article, we explore two CDR technologies: soil carbon sequestration (SCS), and carbon capture and storage (CCS) integrated with cellulosic biofuel production. These CDR technologies are applied as part of decentralized biorefinery systems processing corn stover and unfertilized switchgrass grown in riparian zones in the Midwestern United States. Cover crops grown on corn-producing lands are chosen from the SCS approach, and biogenic CO2 in biorefineries is captured, transported by pipeline, and injected into saline aquifers. The decentralized biorefinery system using SCS, CCS, or both can produce carbon-negative cellulosic biofuels (≤-22.2 gCO2 MJ-1). Meanwhile, biofuel selling prices increase by 15-45% due to CDR costs. Economic incentives (e.g., cover crop incentives and/or a CO2 tax credit) can mitigate price increases caused by CDR technologies. A combination of different CDR technologies in decentralized biorefinery systems is the most efficient method for greenhouse gas (GHG) mitigation, and its total GHG mitigation potential in the Midwest is 0.16 GtCO2 year-1.

PubMed Disclaimer

Publication types

LinkOut - more resources