Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 5;17(10):3930-3940.
doi: 10.1021/acs.molpharmaceut.0c00689. Epub 2020 Sep 4.

"Flexible-Acceptor" General Solubility Equation for beyond Rule of 5 Drugs

Affiliations

"Flexible-Acceptor" General Solubility Equation for beyond Rule of 5 Drugs

Alex Avdeef et al. Mol Pharm. .

Abstract

This study describes a novel nonlinear variant of the well-known Yalkowsky general solubility equation (GSE). The modified equation can be trained with small molecules, mostly from the Lipinski Rule of 5 (Ro5) chemical space, to predict the intrinsic aqueous solubility, S0, of large molecules (MW > 800 Da) from beyond the rule of 5 (bRo5) space, to an accuracy almost equal to that of a recently described random forest regression (RFR) machine learning analysis. The new approach replaces the GSE constant factors in the intercept (0.5), the octanol-water log P (-1.0), and melting point, mp (-0.01) terms with simple exponential functions incorporating the sum descriptor, Φ+B (Kier Φ molecular flexibility and Abraham H-bond acceptor potential). The constants in the modified three-variable (log P, mp, Φ+B) equation were determined by partial least-squares (PLS) refinement using a small-molecule log S0 training set (n = 6541) of mostly druglike molecules. In this "flexible-acceptor" GSE(Φ,B) model, the coefficient of log P (normally fixed at -1.0) varies smoothly from -1.1 for rigid nonionizable molecules (Φ+B = 0) to -0.39 for typically flexible (Φ ∼ 20, B ∼ 6) large molecules. The intercept (traditionally fixed at +0.5) varies smoothly from +1.9 for completely inflexible small molecules to -2.2 for typically flexible large molecules. The mp coefficient (-0.007) remains practically constant, near the traditional value (-0.01) for most molecules, which suggests that the small-to-large molecule continuum is mainly solvation responsive, apparently with only minor changes in the crystal lattice contributions. For a test set of 32 large molecules (e.g., cyclosporine A, gramicidin A, leuprolide, nafarelin, oxytocin, vancomycin, and mostly natural-product-derived therapeutics used in infectious/viral diseases, in immunosuppression, and in oncology) the modified equation predicted the intrinsic solubility with a root-mean-square error of 1.10 log unit, compared to 3.0 by the traditional GSE, and 1.07 by RFR.

Keywords: Abraham H-bond basicity; GSE(Φ,B); Kier Φ flexibility; aqueous intrinsic solubility; beyond Ro5 (bRo5); flexible-acceptor general solubility equation; general solubility equation (GSE); intramolecular hydrogen bonding (IMHB); partial least-squares (PLS); rule of 5 (Ro5).

PubMed Disclaimer

Substances

LinkOut - more resources