Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr;36(4):359-65.
doi: 10.1177/36.4.3279110.

Preparation and characterization of a colloidal gold-insulin complex with binding and biological activities identical to native insulin

Affiliations

Preparation and characterization of a colloidal gold-insulin complex with binding and biological activities identical to native insulin

R M Smith et al. J Histochem Cytochem. 1988 Apr.

Abstract

We studied the binding and biological activities of gold-insulin complexes to develop a complex with properties identical to native insulin. Stabilizing amounts of insulin absorbed to 5-, 10-, or 15-nm gold particles resulted in complexes with 40-327 insulin molecules per gold particle and 4-111 times the biological activity of unlabeled insulin, based on the molar concentration of gold complex. These data suggested that these complexes behaved as multivalent ligands. Gold-insulin complexes were prepared with 5% of the stabilizing insulin concentration and were stabilized with bovine serum albumin. This resulted in a complex with 5-7 insulin molecules per 10-nm gold particle, which stimulated glucose oxidation in rat adipocytes and competed with [125I]-insulin for binding to the insulin receptor identically to unlabeled insulin on an equimolar basis. The organization and distribution of insulin receptors occupied by this monovalent-behaving gold-insulin complex were virtually identical to previous observations using monomeric ferritin-insulin. Since multivalent ligands may affect receptor binding, re-distribution, and intracellular processing, the use of electron-dense probes that resemble the unlabeled ligand in biological and binding properties is appropriate when studying receptor dynamics of in vivo or in vitro biological systems. The gold-insulin complex developed in this study should serve this function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources