Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 27;5(1):69.
doi: 10.1038/s41541-020-00221-3. eCollection 2020.

Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19

Affiliations

Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19

Simon P Graham et al. NPJ Vaccines. .

Abstract

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

Keywords: Vaccines; Virology.

PubMed Disclaimer

Conflict of interest statement

Competing interestsS.C.G. and T.L. are named on a patent application covering ChAdOx1 nCoV-19. The remaining authors declare no competing interests. The funders played no role in the conceptualisation, design, data collection, analysis, decision to publish, or preparation of the manuscript.

Figures

Fig. 1
Fig. 1. SARS-CoV-2 S-specific T cell responses following ChAdOx1 nCoV-19 prime-only and prime-boost vaccination regimens in mice and pigs.
Inbred BALB/c (n = 5) and outbred CD1 (n = 8) were immunised on day 0 and 28 with ChAdOx1 nCoV19 (Prime-boost) or ChAdOx1 nCoV19 on day 28 (Prime-only); pigs (n = 3) were immunised with ChAdOx1 nCoV-19 on days 0 and 28 (Prime-boost), or only on day 0 (Prime-only). To analyse SARS-CoV-2 S-specific T cell responses, all mice were sacrificed on day 49 for isolation of splenocytes and pigs were blood sampled longitudinally to isolate PBMC. Following stimulation with SARS-CoV-2 S-peptides, responses of murine splenocytes a and porcine PBMC c were assessed by IFN-γ ELISpot assays. Using flow cytometry, CD4+ and CD8+ T cell responses were characterised by assessing expression of IFN-γ, TNF-α, IL-2, IL-4 and IL-10 (mice; b) and IFN-γ, TNF-α, IL-2 and IL-4 (pigs; d). Each data point represents an individual mouse/pig with bars denoting the median response per group/timepoint. Data were analysed by ANOVA and statistically significant differences between vaccine groups are indicated: *p < 0.05.
Fig. 2
Fig. 2. SARS-CoV-2 S protein-specific antibody responses following ChAdOx1 nCoV-19 prime-only and prime-boost vaccination regimens in mice and pigs.
Inbred BALB/c (n=5) and outbred CD1 (n=8) were immunised on day 0 and 28 with ChAdOx1 nCoV19 (Prime-boost) or ChAdOx1 nCoV19 on day 28 (Prime-only), whereas, pigs were immunised with ChAdOx1 nCoV-19 on days 0 and 28 (Prime-boost), or only on day 0 (Prime-only). To analyse SARS-CoV-2 S protein-specific antibodies in serum, all mice were sacrificed on day 49 and pigs were blood sampled weekly until day 42. Antibody units or end-point titres (EPT) were assessed by ELISA using recombinant SARS-CoV-2 FL-S for both mice a and pigs b, and recombinant S protein RBD for pigs c. SARS-CoV-2 neutralising antibody titres in pig sera were determined by VNT, expressed as the reciprocal of the serum dilution that neutralised virus infectivity in 50% of the wells (ND50; d), and pVNT, expressed as reciprocal serum dilution to inhibit pseudovirus entry by 50% (IC50; e). Each data point represents an individual mouse/pig sera with bars (a) denoting the median titre per group. Data were analysed by ANOVA and statistically significant differences between vaccine groups are indicated: **p < 0.01; ***p < 0.001; ****p < 0.0001.

References

    1. Zhu F-C, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:1845–1854. doi: 10.1016/S0140-6736(20)31208-3. - DOI - PMC - PubMed
    1. van Doremalen, N. et al. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Negl. Trop. Dis.10.1371/journal.pntd.0007462 (2019). - PMC - PubMed
    1. Folegatti, P. M. et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis. 10.1016/s1473-3099(20)30160-2 (2020). - PMC - PubMed
    1. Munster, V. J. et al. Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. NPJ Vaccines.10.1038/s41541-017-0029-1 (2017). - PMC - PubMed
    1. van Doremalen, N. et al. A single dose of ChAdOx1 MERS provides broad protective immunity against a variety of MERS-CoV strains. Sci. Adv.6, eaba8399. 10.1101/2020.04.13.036293v1 (2020). - PMC - PubMed