Power insensitive surface-normal electroabsorption modulators
- PMID: 32796986
- DOI: 10.1364/OL.400617
Power insensitive surface-normal electroabsorption modulators
Abstract
Surface-normal electroabsorption modulators (SNEAMs) have unique electro-optic modulation properties; however, their behavior and performance at high light intensity is affected by thermal nonlinearities that take place in the modulator active volume. Here we show a novel, to the best of our knowledge, approach to make SNEAMs insensitive to optical power without the use of power-hungry heaters or feedback control systems. By passively compensating for the thermo-optic dependence of the SNEAM resonant cavity, we obtain an eight-fold reduction in the wavelength shift of the SNEAM response at 4 dBm of input power. Furthermore, we show no appreciable degradation in the SNEAM eye diagram at 25 Gbit/s, when the input power is increased up to 2 dBm, which is about four times higher than in conventional SNEAMs.
LinkOut - more resources
Full Text Sources
