Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 14;15(8):e0237691.
doi: 10.1371/journal.pone.0237691. eCollection 2020.

Mask or no mask for COVID-19: A public health and market study

Affiliations

Mask or no mask for COVID-19: A public health and market study

Tom Li et al. PLoS One. .

Abstract

Efficient strategies to contain the coronavirus disease 2019 (COVID-19) pandemic are peremptory to relieve the negatively impacted public health and global economy, with the full scope yet to unfold. In the absence of highly effective drugs, vaccines, and abundant medical resources, many measures are used to manage the infection rate and avoid exhausting limited hospital resources. Wearing masks is among the non-pharmaceutical intervention (NPI) measures that could be effectively implemented at a minimum cost and without dramatically disrupting social practices. The mask-wearing guidelines vary significantly across countries. Regardless of the debates in the medical community and the global mask production shortage, more countries and regions are moving forward with recommendations or mandates to wear masks in public. Our study combines mathematical modeling and existing scientific evidence to evaluate the potential impact of the utilization of normal medical masks in public to combat the COVID-19 pandemic. We consider three key factors that contribute to the effectiveness of wearing a quality mask in reducing the transmission risk, including the mask aerosol reduction rate, mask population coverage, and mask availability. We first simulate the impact of these three factors on the virus reproduction number and infection attack rate in a general population. Using the intervened viral transmission route by wearing a mask, we further model the impact of mask-wearing on the epidemic curve with increasing mask awareness and availability. Our study indicates that wearing a face mask can be effectively combined with social distancing to flatten the epidemic curve. Wearing a mask presents a rational way to implement as an NPI to combat COVID-19. We recognize our study provides a projection based only on currently available data and estimates potential probabilities. As such, our model warrants further validation studies.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Rint and attack rate dependence on mask availability.
The Rint and attack rate a values are simulated based seven scenarios in Table 2. Rint 1 is calculated based on scenarios 1. The same annotation principle applies to all other Rint calculations.
Fig 2
Fig 2. Simulation on infected cases based on Rint.
All figures use two hypothetical controls. The blue dash line curve “all-infected 2.3” is simulated using R0 value of 2.3. The red solid curve “all-infected s_d” is simulated using R0 of 1.7 with relaxed social distancing, assuming a rough extrapolation of reducing about 50% of overall transmission risks in the general population. Fig 2A shows the applying social distancing and wearing a mask in three scenarios (S1,S2, and S3) when Mred is 57.5%. Fig 2B shows the applying social distancing and wearing a mask in two scenarios (S4 and S5) for two extreme conditions. S4 is the scenario when Mred = 40%, Mcov = 8% and Mava = 5%.S5 is the scenario when Mred = 75%, Mcov = 100% and Mava = 100%. Fig 2C shows the applying social distancing and wearing a mask in two scenarios (S6 and S7) for two intermediate conditions, S6 with Mred = 75%, Mcov = 8%, Mava = 52.5%, and S7 with Mred = 75%, Mcov = 54%, Mava = 5%.
Fig 3
Fig 3. Confirmed cases indifferent countries.

References

    1. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med. 2020. Epub 2020/03/24. 10.1016/S2213-2600(20)30134-X . - DOI - PMC - PubMed
    1. Cowling BJ, Zhou Y, Ip DK, Leung GM, Aiello AE. Face masks to prevent transmission of influenza virus: a systematic review. Epidemiol Infect. 2010;138(4):449–56. Epub 2010/01/23. 10.1017/S0950268809991658 . - DOI - PubMed
    1. Brienen NC, Timen A, Wallinga J, van Steenbergen JE, Teunis PF. The effect of mask use on the spread of influenza during a pandemic. Risk Anal. 2010;30(8):1210–8. Epub 2010/05/26. 10.1111/j.1539-6924.2010.01428.x . - DOI - PMC - PubMed
    1. Zhang L, Peng Z, Ou J, Zeng G, Fontaine RE, Liu M, et al. Protection by face masks against influenza A(H1N1)pdm09 virus on trans-Pacific passenger aircraft, 2009. Emerg Infect Dis. 2013;19(9). Epub 2013/08/24. 10.3201/eid1909.121765 - DOI - PMC - PubMed
    1. Larson EL, Ferng YH, Wong-McLoughlin J, Wang S, Haber M, Morse SS. Impact of non-pharmaceutical interventions on URIs and influenza in crowded, urban households. Public Health Rep. 2010;125(2):178–91. Epub 2010/03/20. 10.1177/003335491012500206 - DOI - PMC - PubMed

MeSH terms