Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;36(10):1266-1274.
doi: 10.1016/j.dental.2020.07.008. Epub 2020 Aug 12.

Conversion kinetics of rapid photo-polymerized resin composites

Affiliations

Conversion kinetics of rapid photo-polymerized resin composites

Hamad Algamaiah et al. Dent Mater. 2020 Oct.

Abstract

Objective: To measure the degrees of conversion (DC), conversion kinetics, and the effect of post-irradiation time on rapid photo-polymerized bulk-fill resin composites under conditions equivalent to clinical depths of 1 and 4mm.

Methods: 36 specimens (n=3), based on two resin composites incorporating PowerCure rapid-polymerization technology in two consistencies (PFill; PFlow) and two comparators with matching consistencies (Eceram; EFlow), were investigated from the same manufacturer (Ivoclar AG, Liechtenstein). Specimens were prepared within 4mm diameter cylindrical molds, of either 1mm or 4mm depths respectively, to simulate near-surface and deep locations in a bulk-fill restoration. The independent variables in this study were: materials, thickness and time. Two high irradiance polymerization protocols were utilized for PowerCure materials: 2000 and 3050mW/cm2 for 5 and 3s, respectively. A standard (1200mW/cm2) polymerization protocol was used with control materials. FTIR was utilized to measure DC in real-time for 24h post-irradiation. The data were analyzed using Welch's-ANOVA, Games-Howell post-hoc test, kinetic dual-exponential sum function and independent sample t-tests (p=0.05).

Results: The DC of the materials ranged between 44.7-59.0 % after 5min, which increased after 24h reaching 55.7-71.0 % (p<0.05). Specimen thickness did not influence the overall DC. At 5min, the highest DC was shown in EFlow. But PFlow, irradiated for 3s and 5s exhibited comparable results (p>0.05). PFill composite irradiated with the 3s and 5s protocols did not differ from ECeram (p>0.05). Specimen thickness and material viscosity affected polymerization kinetics and rate of polymerization (RPmax). Faster polymerization occurred in 1mm specimens (except PFill-5s and ECeram). PFill and PFlow exhibited faster conversion than the controls. RPmax varied across the specimen groups between 4.3-8.8 %/s with corresponding DC RPmax between 22.2-45.3 %.

Significance: Polymerization kinetics and RPmax were influenced by specimen thickness and material viscosity. PFill and PFlow materials produced an overall comparable conversion at 5min and 24h post-irradiation, despite the ultra-short irradiation times, throughout the 4mm specimen thickness.

Keywords: AFCT; Degree of conversion; FTIR; Photopolymerization; Polymerization kinetics; Resin composite.

PubMed Disclaimer

LinkOut - more resources