Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul;58(1):11-18.
doi: 10.1002/uog.22179. Epub 2021 Jun 9.

Heterogeneity in defining fetal corpus callosal pathology: systematic review

Affiliations
Free article

Heterogeneity in defining fetal corpus callosal pathology: systematic review

H Mahallati et al. Ultrasound Obstet Gynecol. 2021 Jul.
Free article

Abstract

Objective: Fetal anomalies of the corpus callosum (CC) have been reported in the prenatal imaging literature since 1985, and, especially when isolated, pose challenges for both the patient and fetal medicine specialist. The purpose of this study was to review systematically the literature on prenatally diagnosed abnormalities of the CC, focusing on the terminology used to describe abnormalities other than complete agenesis of the CC, and to assess the heterogeneity of the nomenclature and definitions used.

Methods: This study was conducted in accordance with the PRISMA statement for reporting systematic reviews. A literature search was performed to identify prospective or retrospective case series or cohort studies, published in English, French, Italian, German or Spanish, reporting fetal imaging findings and describing anomalies of the CC. Quality and risk of bias of the studies were evaluated using the Newcastle-Ottawa scale and a modification of the scale developed by Conde-Agudelo et al. for other fetal imaging studies. The data extracted included the number of patients, the number of different anomalies identified, the descriptive names of the anomalies, and, where applicable, the definitions of the anomalies, the number of cases of each type of anomaly and the biometric charts used. Secondary tests used to confirm the diagnosis, as well as the postnatal or post-termination tests used to ascertain the diagnosis, were also recorded.

Results: The search identified 998 records, and, after review of titles and abstracts and full review of 45 papers, 27 studies were included initially in the review, of which 24 were included in the final analysis. These 24 studies had a broad range of quality and risk of bias and represented 1135 cases of CC anomalies, of which 49% were complete agenesis and the remainder were described using the term partial agenesis or nine other terms, of which five had more than one definition.

Conclusions: In comparison to the postnatal literature, in the prenatal literature there is much greater heterogeneity in the nomenclature and definition of CC anomalies other than complete agenesis. This heterogeneity and lack of standard definitions in the prenatal literature make it difficult to develop large multicenter pooled cohorts of patients who can be followed in order to develop a better understanding of the genetic associations and neurodevelopmental and psychological outcomes of patients with CC anomalies. As this information is important to improve counseling of these patients, a good first step towards this goal would be to develop a simpler categorization of prenatal CC anomalies that matches better the postnatal literature. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.

Keywords: MRI; agenesis; corpus callosum; dysplasia; hypoplasia; prenatal diagnosis; ultrasound.

PubMed Disclaimer

References

REFERENCES

    1. Kier EL, Truwit CL. The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 1996; 17: 1631-1641.
    1. Kier EL, Truwit CL. The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR Am J Neuroradiol 1997; 18: 715-722.
    1. Birnbaum R, Barzilay R, Brusilov M, Wolman I, Malinger G. The early pattern of human corpus callosum development: A transvaginal 3D neurosonographic study. Prenat Diagn 2020; 40: 1239-1245.
    1. Rakic P, Yakovlev PI. Development of the corpus callosum and cavum septi in man. J Comp Neurol 1968; 132: 45-72.
    1. Jeret JS, Serur D, Wisniewski KE, Lubin RA. Clinicopathological Findings Associated with Agenesis of the Corpus Callosum. Brain Dev 1987; 9: 255-264.

Publication types