Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct:177:40-49.
doi: 10.1016/j.biochi.2020.08.003. Epub 2020 Aug 12.

Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing

Affiliations

Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing

Lan Jiang et al. Biochimie. 2020 Oct.

Abstract

Mesenchymal stromal cell (MSC)-derived exosome therapy has emerged as an effective therapy strategy for the pathological scar formation. However, the underlying mechanisms have not been completely understood. In the current study, we investigate the therapeutic effect of TSG-6 modified MSC-derived exosomes on a mouse full-thickness wound model and provide evidence of a possible mechanism for MSC-derived exosomes to prevent from scar formation. Overexpression and knockdown of TSG-6 were conducted by lentivirus infection into hBMSCs. Exosomes were isolated from cell culture and identified by transmission electron microscopy and Western blot. C57BL/6J mice were performed of full-thickness skin wounds and treated with exosomal suspension or TSG-6-neutralizing antibody. H&E staining was subjected to observe the pathological changes of scar tissues. Immunohistochemistry, ELISA, real time-PCR and Western blot were applied to detect the expressions of relevant molecules. The results showed that subcutaneous injection of TSG-6 overexpressed MSC-derived exosomes effectively ameliorated scar pathological injury, decreased inflammatory molecular secretion and attenuated collagen deposition in a mouse skin wound model. Reversely, knockdown of TSG-6 abrogated the therapeutic effect of MSC-derived exosomes on scarring. Moreover, TSG-6-neutralizing antibody counteracted the effect of TSG-6 overexpressed MSC-derived exosomes in preventing scar formation. In conclusion, we demonstrated that exosomes derived from TSG-6 modified MSCs suppressed scar formation via reducing inflammation and inhibiting collagen deposition.

Keywords: Exosome; Inflammation; Mesenchymal stromal cell; Scar; TSG-6.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no competing financial interests.

Similar articles

Cited by

MeSH terms

LinkOut - more resources