Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior
- PMID: 32802246
- PMCID: PMC7428197
- DOI: 10.1214/18-ba1142
Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior
Abstract
Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA).
Keywords: gene network; generalized linear model; network marker selection; posterior consistency; thresholded graph Laplacian Gaussian prior.
Figures



Similar articles
-
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28. J Am Stat Assoc. 2024. PMID: 38545331 Free PMC article.
-
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19. Biometrika. 2018. PMID: 30686828 Free PMC article.
-
Laplacian embedded regression for scalable manifold regularization.IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420. IEEE Trans Neural Netw Learn Syst. 2012. PMID: 24806762
-
Feature selection and classification over the network with missing node observations.Stat Med. 2022 Mar 30;41(7):1242-1262. doi: 10.1002/sim.9267. Epub 2021 Nov 23. Stat Med. 2022. PMID: 34816464 Free PMC article.
-
The Laplacian spectrum of neural networks.Front Comput Neurosci. 2014 Jan 13;7:189. doi: 10.3389/fncom.2013.00189. eCollection 2014 Jan 13. Front Comput Neurosci. 2014. PMID: 24454286 Free PMC article.
Cited by
-
Bayesian Inferences on Neural Activity in EEG-Based Brain-Computer Interface.J Am Stat Assoc. 2022;117(539):1122-1133. doi: 10.1080/01621459.2022.2041422. Epub 2022 Mar 18. J Am Stat Assoc. 2022. PMID: 36313593 Free PMC article.
-
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure.J Mach Learn Res. 2022;23(242):https://www.jmlr.org/papers/v23/21-0102.html. J Mach Learn Res. 2022. PMID: 37799290 Free PMC article.
-
Gene-gene interaction analysis incorporating network information via a structured Bayesian approach.Stat Med. 2021 Dec 20;40(29):6619-6633. doi: 10.1002/sim.9202. Epub 2021 Sep 20. Stat Med. 2021. PMID: 34542187 Free PMC article.
-
Bayesian hierarchical models for high-dimensional mediation analysis with coordinated selection of correlated mediators.Stat Med. 2021 Nov 30;40(27):6038-6056. doi: 10.1002/sim.9168. Epub 2021 Aug 17. Stat Med. 2021. PMID: 34404112 Free PMC article.
-
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28. J Am Stat Assoc. 2024. PMID: 38545331 Free PMC article.
References
Grants and funding
LinkOut - more resources
Full Text Sources