Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions
- PMID: 32802571
- PMCID: PMC7418218
- DOI: 10.1021/acscatal.0c01958
Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions
Abstract
Peroxyzymes simply use H2O2 as a cosubstrate to oxidize a broad range of inert C-H bonds. The lability of many peroxyzymes against H2O2 can be addressed by a controlled supply of H2O2, ideally in situ. Here, we report a simple, robust, and water-soluble anthraquinone sulfonate (SAS) as a promising organophotocatalyst to drive both haloperoxidase-catalyzed halogenation and peroxygenase-catalyzed oxyfunctionalization reactions. Simple alcohols, methanol in particular, can be used both as a cosolvent and an electron donor for H2O2 generation. Very promising turnover numbers for the biocatalysts of up to 318 000 have been achieved.
Copyright © 2020 American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol.Angew Chem Int Ed Engl. 2016 Jan 11;55(2):798-801. doi: 10.1002/anie.201507881. Epub 2015 Nov 26. Angew Chem Int Ed Engl. 2016. PMID: 26607550
-
Selective Photooxidation Reactions using Water-Soluble Anthraquinone Photocatalysts.ChemCatChem. 2017 Oct 23;9(20):3821-3826. doi: 10.1002/cctc.201700779. Epub 2017 Sep 7. ChemCatChem. 2017. PMID: 29201242 Free PMC article.
-
H2O2-driven enzymatic oxyfunctionalization of tertiary C-H bonds.Chem Commun (Camb). 2023 Jul 25;59(60):9219-9222. doi: 10.1039/d3cc02925e. Chem Commun (Camb). 2023. PMID: 37416971
-
Oxidations catalyzed by fungal peroxygenases.Curr Opin Chem Biol. 2014 Apr;19:116-25. doi: 10.1016/j.cbpa.2014.01.015. Epub 2014 Mar 5. Curr Opin Chem Biol. 2014. PMID: 24607599 Review.
-
Electrophilic halogenation-reductive elimination chemistry of organopalladium and -platinum complexes.Acc Chem Res. 2015 Feb 17;48(2):238-47. doi: 10.1021/ar500325x. Epub 2015 Jan 20. Acc Chem Res. 2015. PMID: 25602260 Review.
Cited by
-
Reaction engineering blocks ether cleavage for synthesizing chiral cyclic hemiacetals catalyzed by unspecific peroxygenase.Nat Commun. 2024 Feb 9;15(1):1235. doi: 10.1038/s41467-024-45545-z. Nat Commun. 2024. PMID: 38336996 Free PMC article.
-
Electrochemical Immobilisation of Glucose Oxidase for the Controlled Production of H2O2 in a Biocatalytic Flow Reactor.ChemElectroChem. 2022 Sep 13;9(17):e202200319. doi: 10.1002/celc.202200319. Epub 2022 Sep 8. ChemElectroChem. 2022. PMID: 36246851 Free PMC article.
-
Pilot-Scale Production of Peroxygenase from Agrocybe aegerita.Org Process Res Dev. 2021 Jun 18;25(6):1414-1418. doi: 10.1021/acs.oprd.1c00116. Epub 2021 Jun 9. Org Process Res Dev. 2021. PMID: 34168423 Free PMC article. Review.
-
Controlled Delivery of H2O2: A Three-Enzyme Cascade Flow Reactor for Peroxidase-Catalyzed Reactions.ACS Sustain Chem Eng. 2024 Jun 27;12(28):10555-10566. doi: 10.1021/acssuschemeng.4c03220. eCollection 2024 Jul 15. ACS Sustain Chem Eng. 2024. PMID: 39027729 Free PMC article.
-
Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light.Chembiochem. 2021 Mar 2;22(5):790-806. doi: 10.1002/cbic.202000587. Epub 2020 Nov 6. Chembiochem. 2021. PMID: 32961020 Free PMC article. Review.
References
-
- Burek B. O. O.; Bormann S.; Hollmann F.; Bloh J.; Holtmann D. Hydrogen Peroxide Driven Biocatalysis. Green Chem. 2019, 21, 3232–3249. 10.1039/C9GC00633H. - DOI
-
- Renirie R.; Pierlot C.; Wever R.; Aubry J. M. Singlet Oxygenation in Microemulsion Catalysed by Vanadium Chloroperoxidase. J. Mol. Catal. B: Enzym. 2009, 56, 259–264. 10.1016/j.molcatb.2008.05.014. - DOI
-
- Renirie R.; Pierlot C.; Aubry J.-M.; Hartog A. F.; Schoemaker H. E.; Alsters P. L.; Wever R. Vanadium Chloroperoxidase as a Catalyst for Hydrogen Peroxide Disproportionation to Singlet Oxygen in Mildly Acidic Aqueous Environment. Adv. Synth. Catal. 2003, 345, 849–858. 10.1002/adsc.200303008. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources