Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 7;10(3):341-349.
doi: 10.4103/jispcd.JISPCD_42_20. eCollection 2020 May-Jun.

Cellular and Biochemical Changes in Different Categories of Periodontitis: A Patient-based Study

Affiliations

Cellular and Biochemical Changes in Different Categories of Periodontitis: A Patient-based Study

Fiona Shee et al. J Int Soc Prev Community Dent. .

Abstract

Objectives: The aim of this study was to study the effects of periodontitis, diabetes mellitus (DM), and tobacco smoking and chewing habits (TBSCH) on the oxidative stress biomarker levels, namely malondialdehyde (MDA), and the mucosal genotoxic nuclear damage in the marginal gingival cells of subjects. Furthermore, the correlation of the biomarkers, MDA, and nuclear changes in the form of micronucleation (Mn) and binucleation (Bn) was investigated.

Materials and methods: Forty study participants were divided into five subject categories, which were established based on the presence of periodontitis, DM, and TBSCH. Whole saliva and marginal gingival smears collected from subjects were used to determine MDA levels and nuclear changes, respectively. A full-mouth assessment of periodontal pocket depth, clinical attachment loss, and bleeding on probing was performed for each subject to determine periodontal status.

Results: MDA and Mn levels between control group and subjects with only periodontitis (MDA: P < 0.9990; Mn: P < 0.8200) showed no significant difference, whereas levels among subjects with DM, TBSCH, and periodontitis, and all other categories were statistically significant (MDA: P < 0.001). DM and/or TBSCH superimposed on periodontitis cause an exponential increase in biomarker levels. Furthermore, MDA and Mn showed poor correlation (r = 0.162; P = 0.318). Periodontitis alone did not significantly increase oxidative stress levels compared to healthy controls, whereas DM and TBSCH resulted in augmented oxidative stress levels, implying that increased stress produced by DM and TBSCH aggravates or exaggerates periodontal inflammation.

Conclusion: Poor correlation between MDA and Mn indicated that the mechanisms involved in their production are independent of each other.

Keywords: Binucleation; diabetes mellitus; malondialdehyde; micronuclei; periodontitis; tobacco.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Levels of salivary malondialdehyde between subject categories and control group. Periodontitis alone did not significantly increase MDA levels compared to the control group, but an exponential increase in MDA levels occurred when periodontitis was compounded with DM and TBSCH
Figure 2
Figure 2
Levels of micronuclei between subject categories and control group. The trend shown by micronuclei resembles that of MDA levels, as periodontal disease was not accompanied by an increase in Mn levels, whereas superimposition of DM and TBSCH showed an exponential increase in levels
Figure 3
Figure 3
Scatterplot depicting mild positive correlation (Pearson’s r value = 0.161) of malondialdehyde levels and micronucleation
Figure 4
Figure 4
Deoxyribonucleic acid damage due to oxidative stress resulting in formation of genotoxic biomarkers observed in mucosal cells in this study: (A) Micronucleation.(white arrow) (B) Binucleation (white arrow) (normal objective ×100, acridine orange stain)
Figure 5
Figure 5
The role of diabetes mellitus in generating oxidative stress due to chronic hyperglycemia and dyslipidemia. DM = diabetes mellitus, AGE = advanced glycation end products, LDL = low-density lipoprotein, [NAD(P)H] = nicotinamide adenine dinucleotide phosphate, NOS = nitric oxide synthase, SOD = superoxide dismutase, GPx = glutathione peroxidase, GR = glutathione reductase. *Amadori products give rise to Advanced Glycation End-Products (AGE’s) – ROS are generated at multiple steps during this process

References

    1. The American Academy of Periodontology. The pathogenesis of periodontal diseases. J Periodontol. 1999;70:457–70. - PubMed
    1. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin Chem. 1997;43:1209–14. - PubMed
    1. Trivedi S, Lal N, Mahdi AA, Singh B, Pandey S. Association of salivary lipid peroxidation levels, antioxidant enzymes, and chronic periodontitis. Int J Periodontics Restorative Dent. 2015;35:e14–19. - PubMed
    1. Liu Z, Liu Y, Song Y, Zhang X, Wang S, Wang Z. Systemic oxidative stress biomarkers in chronic periodontitis: A meta-analysis. Dis Markers. 2014;2014:931083. - PMC - PubMed
    1. Canakci CF, Cicek Y, Yildirim A, Sezer U, Canakci V. Increased levels of 8-hydroxydeoxyguanosine and malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients. Eur J Dent. 2009;3:100–6. - PMC - PubMed