Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct:58:86-95.
doi: 10.1016/j.cbpa.2020.07.004. Epub 2020 Aug 14.

How synthetic biology can help bioremediation

Affiliations
Review

How synthetic biology can help bioremediation

Elizabeth L Rylott et al. Curr Opin Chem Biol. 2020 Oct.

Abstract

The World Health Organization reported that "an estimated 12.6 million people died as a result of living or working in an unhealthy environment in 2012, nearly 1 in 4 of total global deaths". Air, water and soil pollution were the significant risk factors, and there is an urgent need for effective remediation strategies. But tackling this problem is not easy; there are many different types of pollutants, often widely dispersed, difficult to locate and identify, and in many cases cost-effective clean-up techniques are lacking. Biology offers enormous potential as a tool to develop microbial and plant-based solutions to remediate and restore our environment. Advances in synthetic biology are unlocking this potential enabling the design of tailor-made organisms for bioremediation. In this article, we showcase examples of xenobiotic clean-up to illustrate current achievements and discuss the limitations to advancing this promising technology to make real-world improvements in the remediation of global pollution.

Keywords: Bioremediation; Heavy metals; Organic pollutants; Synthetic biology; Xenobiotics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

Substances

LinkOut - more resources