Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov:144:106044.
doi: 10.1016/j.envint.2020.106044. Epub 2020 Aug 14.

Predicting outdoor ultrafine particle number concentrations, particle size, and noise using street-level images and audio data

Affiliations
Free article

Predicting outdoor ultrafine particle number concentrations, particle size, and noise using street-level images and audio data

Kris Y Hong et al. Environ Int. 2020 Nov.
Free article

Abstract

Outdoor ultrafine particles (UFPs) (<0.1 µm) may have an important impact on public health but exposure assessment remains a challenge in epidemiological studies. We developed a novel method of estimating spatiotemporal variations in outdoor UFP number concentrations and particle diameters using street-level images and audio data in Montreal, Canada. As a secondary aim, we also developed models for noise. Convolutional neural networks were first trained to predict 10-second average UFP/noise parameters using a large database of images and audio spectrogram data paired with measurements collected between April 2019 and February 2020. Final multivariable linear regression and generalized additive models were developed to predict 5-minute average UFP/noise parameters including covariates from deep learning models based on image and audio data along with outdoor temperature and wind speed. The best performing final models had mean cross-validation R2 values of 0.677 and 0.523 for UFP number concentrations and 0.825 and 0.735 for UFP size using two different test sets. Audio predictions from deep learning models were stronger predictors of spatiotemporal variations in UFP parameters than predictions based on street-level images; this was not explained only by noise levels captured in the audio signal. All final noise models had R2 values above 0.90. Collectively, our findings suggest that street-level images and audio data can be used to estimate spatiotemporal variations in outdoor UFPs and noise. This approach may be useful in developing exposure models over broad spatial scales and such models can be regularly updated to expand generalizability as more measurements become available.

Keywords: Audio; Deep learning; Images; Noise; Ultrafine particles.

PubMed Disclaimer

Publication types

LinkOut - more resources