Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 9;12(36):40229-40235.
doi: 10.1021/acsami.0c07800. Epub 2020 Aug 28.

Fine-Tuning and Selective-Binding within an Anion-Functionalized Ultramicroporous Metal-Organic Framework for Efficient Olefin/Paraffin Separation

Affiliations

Fine-Tuning and Selective-Binding within an Anion-Functionalized Ultramicroporous Metal-Organic Framework for Efficient Olefin/Paraffin Separation

Zhaoqiang Zhang et al. ACS Appl Mater Interfaces. .

Abstract

Olefin/paraffin separation is one of the intrinsically challenging tasks, mainly realized through the energy-intensive cryogenic distillation techniques. Here, we report the efficient separation of both propylene/propane (C3H6/C3H8) and ethylene/ethane (C2H4/C2H6) mixtures for the first time by a cheap and customized anion-functionalized metal-organic framework, ZU-36 (also termed as GeFSIX-3-M, M = Ni2+, Co2+), through molecular recognition and cross-section matching mechanism. Specifically, the pore window size of the fine-tuned ZU-36-Ni (4.42 × 4.42 Å2) decorated with high density of electronegative anions matches well with the cross section of C3H6 (4.16 × 4.65 Å2) and C2H4 (3.28 × 4.18 Å2), leading to efficient separation of C3H6/C3H8 and C2H4/C2H6. The high uptake capacity and separation selectivity of ZU-36-Ni were confirmed by adsorption isotherms and breakthrough tests. Binary dynamic breakthrough results showed that ZU-36-Ni can trap 1.35 mmol g-1 C3H6 and 1.08 mmol g-1 C2H4 from C3H6/C3H8 and C2H4/C2H6 mixtures, respectively. The separation selectivity for C3H6/C3H8 on ZU-36-Ni calculated from the breakthrough tests is 19, which sets a new benchmark for C3H6/C3H8 separation. The proposed cross-section matching mechanism together with proper selective binding affinity may serve as a guide for the design of effective porous materials for other important gas separation.

Keywords: Adsorption and separation; cross-section matching; molecule recognition; olefin/paraffin separation; ultramicroporous MOFs.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources